Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.4.435

Analysis of Archaeal Community in Autotrophic Perchlorate-degrading Enrichment Culture  

Kim, Young-Hwa (Department of Environmental Engineering, Dong-A University)
Do, Sanghyun (Busanil Science High School)
So, Hyunseung (Busanil Science High School)
Been, Junwon (Busanil Science High School)
Sung, Haechan (Busanil Science High School)
Ji, Sungchan (Busanil Science High School)
Son, Myunghwa (Busanil Science High School)
Ahn, Yeonghee (Department of Environmental Engineering, Dong-A University)
Publication Information
Journal of Life Science / v.27, no.4, 2017 , pp. 435-441 More about this Journal
Abstract
Perchlorate ($ClO_4^-$) is an emerging contaminant detected in soil, groundwater, and surface water. Previous study revealed bacterial community in the enrichment culture tdegraded perchlorate using elemental sulfur as an electron donor. Quantitative and qualitative molecular methods were employed in this study to investigate archaeal community in the enrichment culture. Real-time qPCR showed that archaeal 16S rRNA gene copy number in the culture was about 1.5% of bacterial 16S rRNA gene copy number. This suggested that less archaea were adapted to the environment of the enrichment culture and bacteria were dominant. DGGE banding pattern revealed that archaeal community profile of the enrichment culture was different from that of the activated sludge used as an inoculum for the enrichment culture. The most dominant DGGE band of the enrichment culture was affiliated with Methanococci. Further research is necessary to investigate metabolic role of the dominant archaeal population to better understand microbial community in the perchlorate-reducing enrichment culture.
Keywords
Archaea; DGGE; enrichment culture; perchlorate; qPCR;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahn, Y. and Kim, Y. H. 2016. Analysis of microbial community in perchlorate-degrading salt-tolerant enrichment culture. J. Kor. Soc. Environ. Tech. 17, 527-535.
2 Anupama, V. N., Prajeesh, P. V. G., Priya, S. A. P. and Krishnakumar, B. 2015. Diversity of bacteria, archaea and protozoa in a perchlorate treating bioreactor. Microbiol. Res. 177, 8-14.   DOI
3 Bardiya, N. and Bae, J. H. 2011. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 166. 237-254.   DOI
4 Coates, J. D., Michaelidou, U., Bruce, R. A., O'connor, S. M., Crespi, J. N. and Achenbach, L. 1999. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Env. Microbiol. 65, 5234-5241.
5 Coates, J. D. and Achenbach, L. A. 2004. Microbial perchlorate reduction: Rocket-fuelled metabolism. Nat. Rev. Microbiol. 2, 569-580.   DOI
6 DeLong, E. F. 1992. Archaea in coastal marine environment. Proc. Natl. Acad. Sci. USA 89, 5685-5689.   DOI
7 Demirel, B. and Scherer, P. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 7, 173-190.   DOI
8 Gray, N. D., Miskin, E. P., Kornilova, O., Curtis, T. P. and Head, I. M. 2002. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants. Environ. Microbiol. 4, 158-168.   DOI
9 Han, K. R. and Ahn, Y. 2013. Characterization of perchlorate- removal using elemental sulfur granules and activated sludge. J. Life Sci. 23, 676-681.   DOI
10 Han, K. R., Kang, T. H., Kang, H. C., Kim, K., Seo, D. H. and Ahn, Y. 2011. Autotrophic perchlorate-removal using elemental sulfur granules and activated sludge: batch test. J. Life Sci. 21, 1473-1480.   DOI
11 Jang, H. M., Kim, J. H., Ha, J. H. and Park, J. M. 2014. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 165, 174-182.   DOI
12 Kim, Y. H., Han, K. R., Hwang, H., Kwon, H., Kim, Y., Kim, K., Kim, H., Son, M., Choi, Y. I. and Ahn, Y. 2016. Analysis of a sulfur-oxidizing perchlorate-degrading microbial community. J. Life Sci. 26, 68-74.   DOI
13 Klappenbach, J. A., Saxman, P. R., Cole, J. R. and Schmidt, T. M. 2001. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29, 181-184.   DOI
14 Park, B. J., Park, S. J., Yoon, D. N., Schouten, S., Damste, J. S. S. and Rhee, S. K. 2010. Cultivation of autotrophic ammonia- oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Env. Microbiol. 76, 7575-7587.   DOI
15 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2. Bioinformatics 23, 2947-2948.   DOI
16 Liebernstiner, M. G., Pinkse, M. W., Schaap, P. J., Stams, A. J. M. and Lomans, B. P. 2013. Archaeal (per)chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Science 340, 85-87.   DOI
17 Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ. Forensics 2, 301-311.   DOI
18 Shin, K. H., Son, A., Cha, D. K. and Kim, K. W. 2007. Review on risks of perchlorate and treatment technologies. J. Kor. Soc. Environ. Eng. 29, 1060-1068.
19 Schleper, C., Jurgens, G. and Jonuscheit, M. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3, 479-488.   DOI
20 Shcherbakova, V., Oshurkova, V. and Yoshimura, Y. 2015. The effects of perchlorates on the permafrost methanogen: implication for autotrophic life on Mars. Microorganisms 3, 518-534.   DOI
21 Timura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
22 Wei, M., Zhang, R., Wang, Y., Ji, H., Zheng, J., Chen, X. and Zhou, H. 2013. Microbial community structure and diversity in deep-sea hydrothermal vent sediments along the Eastern Lau Spreading Centre. Acta. Oceanologica. Sinica. 32, 42-51.