• Title/Summary/Keyword: 클로깅

Search Result 19, Processing Time 0.036 seconds

An Experimental Study on Groundwater Head, Injection Water Flowrate and Seepage Water Flowrate under Clogging State of Underground Storage (LPG 지하저장기지 수평 수벽공의 클로깅 현상 발생시 지하수위 및 주입수량, 삼출수량의 변화양상에 관한 실험적 연구)

  • Han Choong-Yong;Kang Joe M.
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 1997
  • When the water curtain system is employed to keep the liquefied gas in the underground storage cavern, clogging is observed in borehole. Since this phenomenon causes serious difficulties in managing LPG storage cavern, it needs to detect the degree of clogging accurately under various circumstances. Thus, in this study the active factors of clogging, that is, groundwater head, injection water flowrate, and seepage water flowrate, were investigated experimentally using a physical model. Experimental results show that groundwater head around storage cavern increases as cavern Pressure increases, while it decreases as clogging becomes severe. The pressure in storage cavern is required to reduce up to atmospheric pressure in order to detect and identify the degree of clogging more accurately. The decrease of uroundwater head due to clogging slows down as the pressure in borehole increases. As amounts of suspended matters in injected water increase, both injection water flowrate and seepage water flowrate decrease linearly with time, and the flowrate of injection water drops rapidly compared with seepage water flowrate.

  • PDF

A Study on the Geochemical Clogging for the Assessment of the Hydrological Safety of the Underground Oil Storage Carvern (지하유류비축기지 수리안정성 평가를 위한 광물학적 클로깅 가능성 연구)

  • Kim, Geon-Young;Bae, Dae-Seok;Choi, Byeong-Young;Oh, Se-Joong;Koh, Yong-Hwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.139-159
    • /
    • 2008
  • Geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. Most of water samples belonged to $Ca-HCO_3$ and $Ca-HCO_3-SO_4$ types. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which suggests the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Several water samples from the ground observation borehole also show the high saturation indices far the clay minerals, which can fill up the fractures, indicating the possibility of clogging by the clay minerals. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. According to the microbial analysis, the aerobic microbes and slime forming bacteria are dominant in most water samples and anaerobic microbes including sulfate reducing bacteria are very low or not detected. Although the slime forming bacteria which are known as a main microbial cause of the clogging is lower than $10^5\;CFUs/mL$ in all water samples, because the slime forming bacteria are dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern.

Preliminary Study on Alluvial Soil Characteristics for Clogging Possibility in Groundwater Artificial Recharge Area (인공함양 지역 클로깅 가능성 평가를 위한 충적층 토양 특성에 관한 예비 연구)

  • Hwang, Jeong;Choi, Myoung-Rak;Kim, Gyoo-Bum
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • Artificial recharge systems have been employed to solve drought problems due to global climate change. Despite the increased usage, the applications of artificial recharge systems are limited by clogging problems, which reduce recharge rates. In this study, the soil texture and mineral characteristics of alluvial soil in a planned artificial recharge system area were investigated to evaluate the possibility of chemical clogging during the injection of stream water. The primary minerals contained in the clastic particles are quartz, K-feldspar, plagioclase, and biotite, and the secondary minerals filling the pore space are illite, kaolinite and Fe-oxide. The fact that carbonate and sulfate are observed as secondary minerals in the pore space suggests that chemical clogging has not occurred by the interaction between the groundwater and surface water in the study area. Thus, monitoring soil properties, e.g., the formation and growth of secondary minerals in the pore space, is required to investigate the possibility of chemical clogging in artificial recharge systems.

An Analysis of the Composite Discharge Capacity Effect with GCP Method (GCP공법의 복합통수능 효과 분석)

  • Park, Minchul;Kwon, Hyukchan;Shin, Hyohee;Jang, Gisoo;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.37-46
    • /
    • 2011
  • An application frequency of vertical drainage method is increasing as an effective consolidation acceleration method. PBD method is most frequently used as a consolidation acceleration method in vertical drainage methods. PBD is economical and easy to operate but has some problems those are an environmental pollution and a decrease of a discharge capacity caused by bending of drainage materials when it is used in great depth. SCP method was frequently used because it's discharge capacity was good but now it is rarely used because of an increase of the material price because of an order imbalance. As the way to solve these problems, GCP method has been to the fore. For analyzing the effect of GCP method on the discharge capacity, three types of composite discharge capacity tests are done by using GCP, SCP and PBD respectively with the circle case, ${\phi}38{\times}h70cm$. On the contrary to this, GCP shows the worst discharge capacity for a decrease of the void ratio and the clogging phenomenon caused by increasing load. Also to figure out the clogging range of GCP, the clogging of GCP is checked in each load stage with a large case($1.0m{\times}0.5m{\times}1.1m$) which has clear acrylic front face. The diameter of GCP was 35cm and a clogging phenomenon occurred in 10% approximately. The result shows that the discharge capacity of GCP was given the lowest value for a decrease of the void ratio and the clogging phenomenon causing by increasing load. And the clogging phenomenon mostly occurred within 10% of GCP's diameter range.

A Field Evaluation of Calcium Carbonate Scale Prevention using Molecular Vibration in Subway Tunnels (분자진동을 이용한 스케일 방지 기술의 지하철 터널 내 현장적용성 평가)

  • Park, Eunhyung;Chu, Ickchan;Lee, Jonghwi;Kim, Hyungi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.27-33
    • /
    • 2012
  • The purpose of this study is to evaluate the field applicability of Quantum Stick in scale deposit prevention for subway tunnels in Seoul. This technology was installed into drainpipes and its performance was monitored through occasional site visits. SEM and EDS were also performed on scale collected from these drain pipes. Results showed a decrease in scale deposits due to Quantum Stick treatment. In the field test, the device was found to be effective in preventing scale formation in new pipes as well as reducing existing scale in previously installed pipes. However, further investigations are necessary to account for various environmental conditions. In conclusion, the results indicate that molecular Vibration technology is effective in suppressing scale formation.

Genetic Prokaryotic Diversity in Boring Slime from the Development of a Groundwater Heat Pump System (지하수 히트펌프 시스템의 지중 환경관리를 위한 시추 슬라임의 원핵생물 유전자 다양성)

  • Kim, Heejung;Lee, Siwon;Park, Junghee;Joun, Won-Tak;Kim, Jaeyeon;Kim, Honghyun;Lee, Kang-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.550-556
    • /
    • 2016
  • Groundwater heat pump (GWHP) systems must consider phenomena such as clogging to improve system efficiency and maintenance. In this study, we evaluated the prokaryotic diversity in a boring slime sample obtained at a depth of 10 m, which represented an undisturbed sample not affected by aquifer drawdown. Bacteria belonging to the phyla Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%), and Firmicutes (10.2%) were found. Additionally, 144 species were identified as belonging to the genus Koribacter. Archaeal phyla were detected including Thaumarchaeota (42.8%), Crenarchaeota (36.9%), and Euryarchaeota (17.4%) and the class level comprised the miscellaneous Crenarchaeota group (MCG), Finnish forest soil type B (FFSB), and Thermoplasmata, which collectively accounted for approximately 69.4% of the detected Archaea. Operational taxonomic units (OTUs) were analyzed to reveal 3,565 bacterial and 836 archaeal OTUs, with abundances of 7.81 and 6.68, and richnesses of 5.96E-4 and 2.86E-3, respectively. The distribution of the groundwater microbial community in the study area showed a higher proportion of non-classified or unidentified groups compared to typical communities in surface water and air. In addition, 135 (approx. 1.9%) reads were assigned to a bacterial candidate associated with clogging.

Field Applicability of Scale Prevention Technologies for Drainage Holes (배수공 내 스케일 생성 방지 기술의 현장 적용성 평가)

  • Chu, Ickchan;Lee, Jonghwi;Kim, Hyungi;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.45-51
    • /
    • 2012
  • The calcium hydroxide$(Ca(OH)_2)$ which is the cement hydrate flowed into the tunnel by groundwater is reacted with microorganism in the soil, carbon dioxide$(CO_2)$ and the vehicle's exhaust gas$(SO_3)$. So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. By this phenomenon, Degradation of water flow at the drainage system of the tunnel occurred and also pore water pressure is increased. Hence the acceleration of seepage and degradation of lining is occurred. The purpose of this study is to evaluate the field applicability of the Quantum Stick and Magnetic treatment in prevention of scale deposits at the Namsan ${\bigcirc}{\bigcirc}$ tunnel and the Zone ${\bigcirc}{\bigcirc}{\bigcirc}$ of subway. These technologies were installed into drainpipes with their performance monitored through occasional site visits. SEM and XRD were also performed on scale collected from these drainpipes. As a result, in case which factor technology is applied, scale creation is remarkably decreased and especially Quantum Stick treatment performing better than Magnetic treatment. Therefore, additional application of Quantum Stick or Magnetic treatment to the existing drainage is expected to decrease the drainage clogging of the drainage.

박테리아에 의한 클로깅 현상에 따른 임계 상태 균열 암반의 유체투과율 감소에 관한 전산 연구

  • 한충용;강주명;최종근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.73-76
    • /
    • 2001
  • We have simulated the effect of fracture characteristics on reduction of effective permeability of the fractured rocks due to in-situ bacteria growth. A nutrient is injected continuously for growth of in-situ bacteria. We used a power law for fracture length distribution and a fBm for fracture aperture spatial distribution. The results show that in-situ bacteria growth reduces the Permeability hyperbolically, but the porosity of backbone fracture does not change significantly. It shows that reduction of the permeability proceeds at faster speed for smaller value of length exponent(a) and for larger value of Hurst exponent(H). The fracture length distribution has stronger effect on speed of reduction than the aperture spatial distribution. The time needed to reduce permeability is inversely proportional to the hydraulic gradient.

  • PDF

배수조건에 따른 폐타이어의 용출특성 연구

  • Jo Jin-U;Jeong Ha-Ik;Yun Yeo-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.203-206
    • /
    • 2006
  • 본 논문에서는 폐타이어를 지반보강재로 재활용하는 경우 배수조건에 따른 용출특성을 알아보기 위하여 실내실험을 실시하였다 배수조건과 비배수조건으로 연속식 용출시험을 수행하여. 유출수의 pH, 탁도, TOC, Zn 농도를 분석하였다. 실험결과 배수조건인 경우 시간이 경과할수록 용출 농도가 감소하여 주변 환경에 큰 영향을 미치지 않을 것으로 판단되나, 비배수 조건인 경우 용출 농도가 증가하는 현상을 발견할 수 있었다. 배수조건은 폐타이어가 지하수위 위에 존재하는 경우이며, 비배수조건은 폐타이어가 지하수위 아래에 존재하는 경우에 해당한다. 특히, 폐타이어가 지하수위 아래에 위치하는 경우 지오텍스타일의 클로깅 등으로 인하여 배수가 원활히 되지 않을 경우에는 주변환경에 큰 영향을 미칠 것으로 예상되며 이에 대한 각별한 주의가 필요할 것이다.

  • PDF