본 논문에서는 불규칙한 각도 퍼짐을(Random Angle Spread) 가지는 실내와 실외 무선통신환경에서의 초광대역(UWB) 클러스터 신호들의 도착 방향을(Angle-of-Arrival) 추정하기 위하여 초광대역 신호 모형을 고려한다. 기존의 UWB 방향 추정 알고리즘은 다중경로 신호와 클러스터 방향을 모두 추정하는 과정으로 복잡한데, 이를 극복하기 위해 클러스터 자체 방향만을 따로 추정할 수 있는 알고리즘을 제안한다. 잘 알려진 다중신호분류(MUSIC) 알고리즘을 기반으로 한 추정 기술을 제안하고 제안된 추정 기술에 의하여 수신 클러스터에 대한 도착 방향 추정치가 얻어진다. 제안한 신호 모형과 추정 기술은 컴퓨터 모의실험에 의하여 증명된다.
본 논문은 확률변수들로 이루어진 클러스터의 집합과 확률변수들에 대해 관찰된 데이터가 주어진 상황에서, 클러스터 사이에 존재하는 조건부 확률적 의존의 방향성(directional tendency of conditional dependence in the Bayesian probabilistic graphical model)을 결정하는 방법을 기술한다. 클러스터 사이에 존재하는 조건부 확률적 의존의 방향성을 추정하기 위해 한 클러스터에서 다른 각 클러스터에 가장 가까운 확률변수를 해당 클러스터의 외부연결변수로 결정한다. 외부연결변수들 사이에서의 가장 확률이 높은 조건부 확률적 의존성을 나타내는 방향성 비순환 그래프(directed acyclic graph(DAG))를 찾음으로써, 주어진 클러스터들 사이에 존재하는 조건부 확률적 의존의 방향성을 결정한다. 사용된 방법이 클러스터 사이에 존재하는 조건부 확률적 의존의 방향성을 유의미하게 추정할 수 있음을 실험적으로 보인다.
Mountain Method의 다른 형태인 Subtractive 클러스터링 알고리듬은 계산이 간단하고 기존의 클러스터링 방법들과는 달리 초기 클러스터 중심의 개수 선정이 필요 없기 때문에 클러스터를 추정하는데 효과적인 알고리듬이다. 또한 클러스터의 간격을 결정하는 파라미터의 값에 따라 클러스터의 개수를 다르게 할 수 있다. 그러나 이 파라미터에 의해 동일한 그룹(Class)내에서 여러 개의 클러스터 중심이 발생될 수도 있다. 본 논문에서는 Subtractive HyperBox 알고리듬을 사용하여 이 파라미터의 영향을 줄이고 발생한 클러스터 중심이 속한 그룹의 경계를 판정함으로서 같은 그룹내에서 하나의 클러스터만 발생하도록 하고, 순차적으로 클러스터링 한 후 결과를 Subtractive 클러스터링 알고리듬과 비교하여 보았다.
본 논문에서는 Gaussian Mixture Model을 이용한 Gustafson-Kessel 알고리즘의 성능을 개선하였다. 분포 및 밀도가 다른 데이터에 대하여 적절한 클러스터 파라미터를 추정함으로써 클러스터링의 성능을 개선한다. 일반적인 클러스터링 알고리즘의 경우, 데이터가 편중되거나 각 데이터의 밀도가 서로 틀린 경우 클러스터의 파라미터가 정확하게 클러스터를 표현하지 못하는 문제점을 가지고 있다. 제안된 방법에서는 Gustafson-Kessel 알고리즘을 이용하여 클러스터 파라미터를 추정하며 알고리즘내의 파라미터 일부를 Gaussian Mixture Model을 이용하여 동적으로 갱신하였다 시뮬레이션을 통하여 제안된 방법의 유용성을 보인다.
IEEE802.15.4a 표준 채널 환경에 적합한 신호모형과 평균가중 도착각 추정기법을 제안하여 저속 초광대역 방식에 근거한 무선측위 시스템에 사용되는 신호 클러스터의 도착각 매개변수를 추정하고, 종래 추정방식들과 비교해 추정성능이 우수한 두 가지 방식을 제안한다. 클러스터 수가 많은 채널 환경에서는 평균 주사벡터기반의 도착각 추정방식이, 클러스터 수가 작은 채널에서는 평균가중 주사벡터 방식의 도착각 추정이 더 정확함을 컴퓨터 모의실험을 통해 보인다. 또한, 신호대 잡음비를 변화시켜도 항상 제안 방식의 성능이 우수함을 알 수 있으며, 제안 방식은 신호대 잡음비가 증가함에 따라 추정오차가 감소함도 알 수 있다.
분할 계층적 클러스터링(Divisive Hierarchical Clustering)은 하나의 클러스터에서 시작하여 각각의 데이터가 독립된 클러스터에 속할 때까지 각 클러스터를 분할하고 분할된 클러스터 간에 데이터를 이동하는 과정을 반복 수행한다. 하지만, 이러한 일련의 재귀적 호출 과정에서 입력 데이터가 임의적으로 선택되는 경우, 클러스터 내 데이터의 많은 이동을 야기할 수 있다. 이로 인해 주변 차량의 위치를 추정하여 수집된 위치 좌표 정보를 고속으로 클러스터링 할 필요가 있는 로컬 맵 생성 과정에서 사용하기 어렵다는 단점이 있다. 본 논문에서는 주변 차량 위치 추정 과정에서 차량의 주행 방향 정보를 활용하여 분할된 클러스터를 구성하는 데이터의 임의성을 제거함으로써, 클러스터링 연산 속도를 평균 40% 가량 향상시킬 수 있는 새로운 고속의 분할 계층적 클러스터링 방법을 제안한다.
1차원 클러스터 기반의 시퀀스 등화기(1-D CBSE)는 시퀀스 등화기(MLSE)가 갖는 계산상의 복잡성을 효율적으로 해결하고 비선형 채널에서의 뛰어난 성능 개선을 가져온다. 본 논문에서는 다중 경로 페이딩 채널 추정에 대응하는 1-D CBSE의 클러스터 중심을 추정하기 위한 향상된 훈련 시퀀스 구성 기법을 제안하였다. 새로이 제안된 등화기는 기존의 방식에서 갖는 문제점을 해결하고, 보다 짧은 길이의 훈련 시퀀스를 이용함으로써 대역폭 효율을 증대시키는 향상된 결과를 가져왔다. 제안된 알고리즘의 우수성은, 기존의 방법과 제안된 최적의 훈련시퀀스를 적용한 1-D클러스터 기반의 새로운 중심 추정을 통한 방법을 비교를 통하여 보였다. 특히, 컴퓨터 시뮬레이션에 의한 심볼 에러율(SER)에 기반을 둔 비교 분석을 통하여 살펴보았다.
본 논문에서는 video stream내의 움직이는 객체 정보를 추정하고 동적 GTM(genetic tree-map) 알고리즘을 사용하여 얼굴 영역 검출 기법을 제안한다. 기존의 일반적인 객체 추정 기법은 클러스터(cluster)과정을 통하여 영상 정보를 분할하고 그 중 움직이는 객체 부분을 복원함으로서 추정하였다. 제안하는 기법은 BMA(block matching algorithm)[1] 알고리즘을 사용하여 video stream 에서 움직이는 객체 정보를 얻고 클러스터 알고리즘으로 PCA(principal component analysis)를 사용한다. PCA 기법은 입력 데이터에 관해 통계적 특성을 이용하여 주성분을 찾는다. 주축과 영역분할 알고리즘을 사용하여 데이터를 분할하고, 분할된 객체 정보를 사용하여 특정 객체만을 추정하는 것이 가능하다. 이렇게 추정된 객체를 얼굴영역의 feature에 대하여 신경망 학습인 동적 GTM 알고리즘을 사용하여 생성된 동적 GTM 맵의 정보에 따라 객체의 얼굴영역만을 추출해 낼 수 있다[2-6].
이 논문에서는 지역별 산업별로 다양하게 추진되고 있는 '산업클러스터' 조성에 있어 사전 타당성의 중요성과 클러스터 효과 추정 방법론을 정립하고자 하였다. 또한 국가식품클러스터 조성 사례를 중심으로 이러한 방법론을 적용하여 그 효과를 실증 분석하였다. 산업클러스터의 경우 집적 및 HW시설 및 SW지원을 통한 혁신으로 인해 개별 입지해 있던 혹은 개별 입지하게 될 중소기업의 생산성이 혁신 클러스터 입주 후 입주기업간 혹은 지원기관간 하나의 대기업과 같은 네트워크 활동을 통해, 대기업의 효율성 수준으로 증가함을 가정하여 이들의 차이인 부가가치 증가분을 클러스터 효과 즉 생산성 제고로 계량하는 모형을 가정하였다. 이러한 모형 설정에 대한 실증분석을 위해 개별 기업 집적을 위한 산업단지 조성, 연구개발을 위한 지원시설로서의 6개 HW시설과 4개 SW지원 계획을 포함하고 있어 클러스터의 구성요소가 모두 포함된 '국가식품 클러스터'를 사례로 선정하였다. 식품산업에 있어 클러스터 입주 후 각 개별기업은 3.84%만큼의 부가가치 개선 효과를 얻는 것으로 예측되었다. 본 논문에서 산정한 집적을 통한 생산성 제고 효과 즉 산업클러스터 효과가 구현되고 증진되기 위해서는 산업단지 계획 수립 및 각 부처 혹은 지자체의 각종 클러스터 조성에 대한 사전 전략과 계획 수립에 있어 면밀한 검토 및 계획 수립이 필요할 것이다.
본 논문에서는 빠르게 변화하는 이동 무선 채널 환경에서 심각한 성능 저하를 일으키는 인접 심볼 간섭(Inter-symbol interference: ISI)에 대처하기 위해 MLSE(Maximum Likelihood Sequence Estimztion) 등화기의 성능을 향상시키는 방법을 제안하였다. 기존의 MLSE 등화기는 비터비 알고리즘으로 어느 정도 계산량을 감소시켰지만, 정확한 채널 임펄스 응답을 필요로 하기 때문에, 시변 채널에서의 복잡한 채널 추정이 그 문제점으로 남아 있다. 이러한 문제점을 해결하기 위해서, 간단하고 향상된 칼만 필터 기반의 채널 추정기를 새롭게 제안하여 MLSE의 복잡성을 줄였다. 또한, 복잡한 채널 추정을 대신하여 페이딩 채널을 거쳐 수신된 데이터를 클러스터로 매핑하여 클러스터 중심 추정을 이용한 1-D CBSE(1-Dimensional Clustering-based Sequence Equalizer) 알고리즘에, 최소 길이를 지닌 훈련 시퀀스를 제안하여 개선된 1-D CBSE을 이용한 MLSE 등화 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.