• Title/Summary/Keyword: 크리프 해석

Search Result 201, Processing Time 0.02 seconds

An Alternative One-Step Computation Approach for Computing Thermal Stress of Asphalt Mixture: the Laplace Transformation (새로운 아스팔트 혼합물의 저온응력 계산 기법에 대한 고찰: 라플라스 변환)

  • Moon, Ki Hoon;Kwon, Oh Sun;Cho, Mun Jin;Cannone, Falchetto Augusto
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.219-225
    • /
    • 2019
  • Computing low temperature performance of asphalt mixture is one of the important tasks especially for cold regions. It is well known that experimental creep testing work is needed for computation of thermal stress and critical cracking temperature of given asphalt mixture. Thermal stress is conventionally computed through two steps of computation. First, the relaxation modulus is generated thorough the inter-conversion of the experimental creep stiffness data through the application of Hopkins and Hamming's algorithm. Secondly, thermal stress is numerically estimated solving the convolution integral. In this paper, one-step thermal stress computation methodology based on the Laplace transformation is introduced. After the extensive experimental works and comparisons of two different computation approaches, it is found that Laplace transformation application provides reliable computation results compared to the conventional approach: using two step computation with Hopkins and Hamming's algorithm.

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

터빈디스크합금 Waspaloy의 점소성변형거동 해석

  • 박노광;염종택;김인수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.35-35
    • /
    • 2000
  • 터빈의 핵심구동부품은 손상이 누적되어 파괴에 이를 경우 치명적인 결과를 야기할 수 있기 때문에, 부품사용조건에서의 소성변형과 이에 따른 손상 누적을 정확히 예측하고 평가함으로써 균열생성 시점을 정확히 파악하여야 할 필요가 있다. 현재 터빈디스크와 같이 고온 고응력에서 사용되고 있는 소재부품의 수명은 궁극적으로 크리프변형과 피로시험의 공동작용으로 결정되며, 재료특성모델링 시험에 있어서도 dwell time 피로시험을 통해 dwell time 효과를 점검하고 점소성 재료변형에 근거하여 피로에 의한 변형 현상을 설명할 수 있다.

  • PDF

Analysis for Creep Densification and Grain Growth of Ceramic Powder Compacts (세라믹 분말 성형체의 크리프 치밀화 및 결정립 성장의 해석)

  • 권영삼;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.251-258
    • /
    • 1993
  • A constitutive model is proposed to analyze creep densification and grain growth of ceramic powder compacts. The creep strain rates for powder compacts are obtained from constitutive equations proposed by Rahaman et al. and Helle et al. The grain-growth rate is obtained by assuming time, grain size, and strain rate as its internal state variables. the proposed constitutive model is compared with experimental data for alumina compacts obtained by Venkatachari and Raj for sinter forging and by Son et al. for hot pressing.

  • PDF

A Computational Study on Creep-Fatigue behavior of Weld Interface Crack (용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구)

  • 이진상;윤기봉
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

Analysis of Reheater Pipe Crack for Oil Power Plant (중유발전소의 재열기관 균열 해석)

  • Hong, S.H.;Hong, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.643-647
    • /
    • 2003
  • Power plant Piping operating at elevated temperature often fails prematurely by the growth of microcracks under creep conditions. Therefore, the life assessment of high temperature components that contain cracks is an important technological problem. The mechanisms of crack growth in simple metals and alloys have been investigated using both mechanical and microstructural approaches. In this study, life prediction accounting for creep, crack growth and thermal stress is analyzed.

  • PDF

Structural Analysis and Design method of Concrete in the IT Era (IT 시대 콘크리트 구조물의 구조해석 및 설계 기법)

  • 김종우;문정호
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • 구조재료로써 콘크리트의 물리적 특성은 강재와는 달리 시간 의존적이라고 할 수 있다. 즉, 타설 후 재령이 경과함에 따라 압축강도와 탄성계수가 증가함은 물론, 콘크리트 내의 수분이 대기 상태로 증발하면서 부재가 수축하는 건조수축 및 외력의 증감없이 변형률이 증가하는 크리프 특성 등을 가지고 있다. 또한, 콘크리트는 시멘트의 수화반응에 의해 시공초기에 재료의 온도가 급격히 상승하는 발열특성도 동시에 가지고 있다. 이러한 특성들은 구조물의 설계시 무시할 수 없으며, 각 시공단계 및 완성단계의 구조물의 응력에 커다란 영향을 미치게 된다.(중략)

Modeling Strain Rate-dependent Behavior in Consolidation of Natural Clay (자연점토의 변형률속도 의존적인 압밀거동의 해석)

  • ;Leroueil, S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.17-28
    • /
    • 1999
  • In order to analyze effects of strain rate on consolidation of natural clay, this paper presents a nonlinear elasto viscoplastic model in which viscoplastic behavior is modeled by a unique effective stress-strain-strain rate relationship (equation omitted). The predicted values using numerical analysis are compared with measured ones in several laboratory tests such as creep test, multistage load test, and relaxation test for Berthierville clay. It is possible to estimate consolidation behavior of natural clay with reasonable accuracy using the proposed nonlinear viscoplastic model.

  • PDF

A Study on the Creep Characteristics according to Groove Shape of T-Welded Joint (T-Joint 용접부의 Groove형상별 크리프 특성에 관한 연구)

  • Bang, Han-Seo;Kim, Jong-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.68-76
    • /
    • 1999
  • The welding residual stresses produced by the welding frequently caused a crack and promote stress corrosion etc. in HAZ(heat affected zone) contained with external load and weakness of material. Therefore, PWHT(post welding heat treatment) is widely used to reduce wekdubg residuss, to relax hardening of heat affected zone and to get rid of impurity. In this study, in order to define the effect on shappes of T-welded joint, during the post welding heat treatment, we have carried out numerical analyses on the several test pieces by using computer program which was based on thermal-elasto-plato-plasto-creep theories for the study. The main results obtained form this study is as follows: 1) The mechanical difference for change the thickness of plate and groove angle did not appear. 2) The distribution modes of welding residual stresses are same on the all test specimens during the post welding heat treatment. 3) In a mecharical point of view, minimum groove groove angle($40^{circ}$) is more suitable than maximum groove angle($60^{circ}$). 4) Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

Damage Analysis of Turbopump Turbine considering Creep-Fatigue effects (크리프-피로 영향을 고려한 터보펌프 터빈의 손상해석)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Structures under high temperature may have creep behavior and fatigue behavior. Durability study of the structures need the damage analysis with the creep-fatigue effects. In this paper, the damage analysis is studied for a turbine blade in the turbopump for a liquid rocket engine which is operated under high temperature condition. First of all, the load cycle is required for defining the operational characteristics of turbopump. The thermal stress analysis is done for a turbine blade of the turbopump. The stress analysis results are used to judge damage due to the creep and the fatigue. The strain-life method with miner rule is used for fatigue damage analysis. The Larson-Miller parameter master curve and robinson rule are used for the creep damage analysis. The linear damage summation method is used to consider creep-fatigue effects of turbopump turbine. Finally, the analysis results for fatigue and the influence are compared to figure out the damage phenomenon of the turbopump turbine.