• Title/Summary/Keyword: 크리프 시험

Search Result 167, Processing Time 0.025 seconds

An Experimental Study on the Mechanical Properties of Hwangtoh Concrete (황토콘크리트의 역학적 특성에 대한 실험적 연구)

  • Tak, So-Young;Hong, Geon-Ho;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.689-692
    • /
    • 2008
  • The purpose of this study was to analyze mechanical properties through an experiment of concrete that reinforced PET fiber, blast furnace slag and Hwangtoh. As admixture that is substitute material of cement for environmental concrete development In order to measure compressive strength, the experiment has executed to concrete, Hwangtoh concrete and a mixture specimen of Hwangtoh and PET reinforcement fiber. Also, creep and drying shrinkage experiment have executed to analyze long-term quality of specimens. Test results, compressive strength by age was not much of difference as a substitute, however, compressive strength of HTC specimen was the strongest of the three specimens. In the case of creep and drying shrinkage, long-term quality of HTC specimen was distinguished.

  • PDF

A Study on the Model Parameters of the Anisotropic Elastoplastic-Viscoplastic Bounding Surface Model for Cohesive Soils (점성토에 있어서 비등방 점탄소성 Bounding Surface 모델의 모델정수에 관한 연구)

  • Kim, Dae-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • 본 연구에서는 지반의 비등방성을 고려한 점탄소성 bounding surface 모델의 정확성을 검증하고 모델정수의 영향을 고찰하였다. 이를 위하여 모델을 컴퓨터 프로그래밍 하였으며 실내시험을 실시하였다. 실내시험으로는 표준압밀시험, 등방/비등방 압밀 삼축압축시험, 크리프 시험 등이 실시되었다. 연구결과, 컴퓨터 프로그램을 이용한 해석결과와 실내시험 결과는 잘 부합되었으며, 탄소성 모델정수의 영향은 크지 않았으나 점소성 모델정수의 영향은 해석결과에 큰 영향을 미치는 것으로 고찰되었다.

  • PDF

High-Temperature Design of Sodium-to-Air Heat Exchanger in Sodium Test Loop (소듐 시험루프 내 소듐대 공기 열교환기의 고온 설계)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk;Lee, Yong-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.665-671
    • /
    • 2013
  • In a Korean Generation IV prototype sodium-cooled fast reactor (SFR), various types of high-temperature heat exchangers such as IHX (intermediate heat exchanger), DHX (decay heat exchanger), AHX (air heat exchanger), FHX (finned-tube sodium-to-air heat exchanger), and SG (steam generator) are to be designed and installed. In this study, the high-temperature design and integrity evaluation of the sodium-to-air heat exchanger AHX in the STELLA-1 (sodium integral effect test loop for safety simulation and assessment) test loop already installed at KAERI (Korea Atomic Energy Research Institute) and FHX in the SEFLA (sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger) test loop to be installed at KAERI have been performed. Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two heat exchangers according to the high-temperature design codes, and the integrity of the high-temperature design of the two heat exchangers was confirmed.

In-situ Determination of Structural Changes in Polyethylene upon Creep and Cyclic Fatigue Loading (크리프와 반복 피로하중에 의한 폴리에틸렌의 실시간 구조 변화)

  • Jeon, Hye-Jin;Ryu, Seo-Kgn;Pyo, Soo-Ho;Choi, Sun-Woong;Song, Hyun-Hoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2012
  • Long-term performance of polymer under constant sustained load has been the main research focus, which created a need for the accelerated test method providing proper lifetime assessment. Cycling fatigue loading is one of the accelerated test method and has been of great interest. Microstructure change of high density polyethylene under cyclic fatigue loading and creep was examined utilizing a tensile device specially designed for creep and fatigue test and also can be attachable to the X-ray diffractometer. In this way, the crystal morphology change of polyethylene under creep and cyclic fatigue load was successfully monitored and compared. Despite the marked differences in macroscopic deformation between the creep and cyclic fatigue tests, crystal morphology such as crystallinity, crystal size, and $d$-spacing was as nearly identical between the two test cases. Specimens pre-deformed to different strains, i.e., before yield point (BYP), at yield point (YP) and after yield point (AYP), however, showed markedly different changes in crystal morphology, especially between AYP and the other two specimens.

Estimation Method of Creep Coefficient in Concrete Structures (콘크리트 구조물에서 크리프 계수 추정 방법)

  • Park, Jong-Bum;Park, Jung-Il;Chang, Sung-Pil;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • To predict the time-dependent behavior of concrete structures, the models which describe the time-dependent characteristics of concrete, i.e. creep and shrinkage are required. However, there must be significant differences between the displacements that are obtained using the given creep and shrinkage models and the measured displacements, because of the uncertainties of creep and shrinkage model itself and those of environmental condition. There are some efforts to reduce these error or uncertainties by using the model which are obtained from creep test for the concrete in construction site. Nevertheless, the predicted values from this model may be still different from the actual values due to the same reason. This study aimed to propose a method of estimating the creep coefficient from the measured displacements of concrete structure, where creep model uncertainty factor was considered as an error factor of creep model. Numerical validation for double composite steel box and concrete beam showed desirable feasibility of the presented method. Consideration of the time-dependent characteristics of creep as one of the error factors make it possible to predict long-term behaviors of concrete structures more realistically, especially long-span PSC girder bridges and concrete cable-stayed bridges of which major problem is the geometry control under construction and maintenance.

11CrMoVNb 페라이트계 내열강의 크리프 파단 시간에 따른 미세조직의 변화

  • Lee, Gyu-Ho;Heo, Ju-Yeol;Jeong, U-Sang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • MX 석출물 형성 원소인 V과 Nb을 첨가한 11Cr-1Mo-VNb 페라이트계 내열강의 각각의 시험 온도에서 파단 시간에 따른 미세조직의 변화를 연구하였다. 초기 조직은 템퍼드 마르텐사이트 조직을 갖고 있었으며, 고온 강도를 저하시키는 ${\delta}$-페라이트는 존재하지 않았다. 주 석출상은 $M_{23}C_6$와 MX로 확인되었다. 또한, 모든 크리프 파단재에서 응력을 받은 게이지 부분이 응력을 받지 않은 그립 부분보다 석출물 및 마르텐사이트 래스 폭의 성장이 가속되는 결과를 나타내었다. 이는 크리프 변형 중 응력 집중에 의해 래스 경계를 따라 전위가 집적되고, 이에 따른 용질원자의 확산 속도가 증가하여 석출물의 성장에 따른 래스 경계의 이동이 일어나 게이지 부분이 그립 부분보다 마르텐사이트 회복이 가속된 것으로 판단된다.

  • PDF

Creep Properties of Superalloy Udimet 720 in relation to Exposed (초내열합금 U720의 노출시험에 따른 크리프 특성)

  • Kong, Y.S.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.57-62
    • /
    • 2001
  • Gas turbine performance is highly dependent on the engine performance which is closely related to the engine materials since they are exposed to severe working environments, i.e, high temperature and high stresses. For this reason, advanced materials with improved properties are required for the engine. The purpose of this research is to develop key materials technologies for aircraft industry and to tester domestic production of related parts. In this paper, the real-time prediction of high temperature creep strength and creep life for nickel-based superalloy Udimet 720(high-temperature and high-pressure the gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and $704^{\circ}C$.

  • PDF

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.

Creep Damage and Hardness Properties for 9Cr Steel by SP-Creep Test Technique (SP-Creep 시험기법에 의한 9Cr강의 크리프 손상과 경도 특성)

  • Baek, Seung-Se;Lyu, Dae-Young;Kim, Jeong-Ki;Kwon, Il-Hyun;Chung, Se-Hee;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.105-110
    • /
    • 2001
  • It has recently been raised main issue how solve the problem of insufficient energy. One of the solution is to increase the thermal efficiency of power generation system. For the purpose of high efficiency, it is necessary to increase the steam temperature and pressure. So, the use of modified $9{\sim}12%Cr$ steel having superior creep rupture strength and oxidation resistance is required to endure such severe environment. The evaluation of creep properties of those heat resistance material is very important to secure the reliability of high temperature and pressure structural components. Since creep properties are determined by microstructural change such as carbide precipitation and coarsening, It is certain that there are some relationship between creep properties and hardness affected by microstructure. In this study, SP-Creep ruptured test for newly developed 9Cr steel being used as boiler valve material was performed, and creep properties of the material were evaluated. Also, hardness test were performed and hardness results were related to the creep properties such as LMP and creep strength to verify the availability of SP-Creep test as creep test method.

  • PDF

Assessment of Long-Term Stability of Geosynthetic Reinforcement Materials by Reduction Factors (감소인자에 의한 토목합성보강재의 장기안정성 평가)

  • Jeon, Han-Yong;Mok, Mun-Sung;Cho, Seong-Ho;Cha, Dong-Hwan;Kim, Seong-Cheol;Ahn, Ju-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.11-19
    • /
    • 2005
  • Long-term stability of two type geogrids were evaluated. Membrane drawn type geogrid showed the exponential type tensile property and textile type geogrid showed the rapid increase of tensile property closer toward the break point. Short term accelerated creep test was done for textile type geogrid but done for membrane drawn type geogrid at ambient temperature because of its thermal property. Creep strain for membrane drawn type geogrid was larger than the ultimate tensile strain by tensile test. Reduction factor by creep deformation of textile type geogrid was smaller than that of membrane type geogrid. From this result, it was seen that the textile type geogrid is more stable than membrane type geogrid by creep deformation.

  • PDF