• Title/Summary/Keyword: 큐브위성

Search Result 77, Processing Time 0.025 seconds

Analysis of Cubesat Development Status in Korea (한국의 큐브위성 개발 현황 분석)

  • Han, Sanghyuck;Choi, Yeonju;Cho, Dong-Hyun;Choi, Won-Sub;Gong, Hyeon Cheol;Kim, Hae-Dong;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.975-988
    • /
    • 2017
  • Since 2000, about 750 cubesats have been launched as of August 2017 and development and the launch of cubesat increased exponentially. Since standard of cubesat has been proposed in 1999, cubesats have grown considerably beyond the scope of education and technology verification to commercial use in the area of space exploration and earth observation, and the variety of cubesat mission and type has increased recently. In Korea, some universities and individuals have independently developed cubesats since 2000, and cubesat contests which were organized by KARI and sponsored by Ministry of Science and ICT from 2012 highly contributed to cubesat development in Korea. In addition, domestic institutes such as KARI, KASI started to develop cubesats for space science and exploration mission. Nineteen cubesats have been progressed or completed in development until now. In this paper, we present the technical trend and describe all cubesats in Korea.

Systems Engineering for System Design and Fabrication of CubeSats (큐브위성의 시스템 설계 및 제작을 위한 시스템 공학)

  • In-Hoi Koo;Myung-Kyu Lee;Seul-Hyun Park
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.342-354
    • /
    • 2023
  • The paradox of cubesat development process in the New Space paradigm is related to a complicated and time-consuming system engineering procedure. Due to their low cost and quick production time, cubesats are a highly accessible space asset in the startup-driven "New Space" industry. In reality, however, the development process experienced by the student teams selected through the national cubesat competition is quite different from what we expect. This is because cubesats are designed and implemented using a lengthy and tedious procedure defined by the systems engineering perspective. The purpose of this work is to explain to developers who are unfamiliar with systems engineering the role and function of systems engineering in each step of the cubesat development process.

Construction of Indoor Ground Station for Cubesat Communication Test (큐브위성 송수신시험을 위한 실내용 지상국 구축)

  • Han, Sanghyuck;Moon, Sangman;Shin, Dongyeop;Moon, SungTae;Gong, Hyeon Cheol;Choi, Gi-Hyuk
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • During developing cubesat flight software, Communication test between cubesat and ground station is needed. For this, we have constructed indoor ground station without outdoor antenna for decreasing total cost and time. In this time, if output power of ground station is high, it will affect for cubesat transceiver to be fail. For solving this problem, ground station must be designed for output power of it to be lower than input power of cubesat satellite, and it must be verified. In this paper, first, we describe cubesat indoor ground station using UHF and VHF. Second, we describe output power decreasing test for indoor operation of ground station by attaching attenuators in the end of the output connector.

Mission Performance Results of 15 CubeSats at the Contests(1st ~ 5th) and Consideration of an Improvement Scheme (큐브위성 경연대회(1~5회) 15기의 임무수행 결과 및 향상방안 고찰 )

  • Guee Won Moon;Cheol Hea Koo;In Hoi Koo
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.104-109
    • /
    • 2023
  • The Cube Satellite Contest has been held six times as of August 2023, and a total of 21 teams have been selected. Fifteen Cube Satellites selected in previous contests were successfully launched and entered into low-Earth orbit. The six Cube Satellites selected in the sixth contest in 2022 are currently undergoing detailed design, and are scheduled to be launched in 2025 using a Korean launch vehicle. In this study, we analyzed the initial operation reports submitted by the selected teams of the Cube Satellite Contest in 2012, 2013, 2015, 2017, and 2019 to assess mission performance and identify causes of mission failure. Based on the submitted reports, an improvement scheme to enhance mission success for future Cube Satellites is proposed.

Study of the architecture design for the CubeSat satellite power system (큐브위성의 전력계 시스템 구조 설계 연구)

  • Lee, Seongjun;Yang, Haesung;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.163-164
    • /
    • 2017
  • 본 논문에서는 KMSL(Korea Microgravity Science Laboratory) 큐브 위성에 대해 설명하고 전력시스템 설계 연구 방법을 제시한다. 1~3리터 사이즈인 초소형 인공위성(큐브위성)의 전력시스템은 태양 전지 패널로부터 큐브 위성의 부하장치 운용을 위한 전력을 공급받고, 남은 잉여 전력은 배터리에 저장하여 식(eclipse) 구간 동안 전력이 공급될 수 있도록 전력계가 구성된다. 본 논문에서는 조선대학교 KMSL팀의 큐브 위성에 대한 전력시스템을 설계하기 위해서 위성 궤도 및 자세에 따른 생산 전력, 소비 전력을 인공위성의 자세 및 궤도에 따라 분석하고, 부하 장치의 전원 및 소모전력을 통해 전력 및 에너지 마진(margin)이 충분하도록 전력계시스템의 구성품 용량을 설계하였다.

  • PDF

Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Passive Attitude Stabilization Method (수동형 자세제어 안정화 방식을 적용한 큐브위성의 열적 특성분석)

  • Oh, Hyun-Ung;Park, Tae-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.423-429
    • /
    • 2014
  • Passive attitude stabilization methods using the permanent magnet combined with hysteresis damper and the gravity gradient boom have been widely used for the attitude determination and control of cube satellite, due to its advantage of system simplicity. In this paper, on-orbit thermal characteristics of the cube satellite considering the attitude profiles obtained from the above passive attitude stabilization methods have been investigated through on-orbit thermal analysis. In addition, the effectiveness of the various thermal coatings on the panel for the communication antenna installation has been verified.

Development of Cube Satellite's Communication System Using Commercial UHF Half-Duplex Antenna (상용 반이중 통신방식 UHF대역 송·수신겸용 안테나를 적용한 큐브위성의 통신시스템 구현)

  • Chae, Bong-Geon;Ha, Heon-Woo;Jang, Su-Eun;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.522-528
    • /
    • 2014
  • A UHF/VHF full-duplex communication using monopole and dipole antenna has been widely used for cube satellite applications. This kind of communication system requires a dedicated structure panel for antenna integration, which is the one of the disadvantages of the conventional communication system from the accommodation point of view considering the extremely limited volume of the cube satellite. In this study, to maximize the accommodation efficiency of the cube satellite, the commercial UHF half-duplex antenna combined with buck converter for communication modes transition has been considered in the communication system design. Its effectiveness has been verified through link budget analysis based on the antenna specifications and satellite's operation conditions. In addition, the antenna deployment mechanism for the synchronous release of multi-antennas has also been introduced.

Analysis on Mission Lifetime and Collision Avoidance of Cubesat Launched from ISS (ISS에서 발사되는 큐브위성의 임무수명 및 충돌회피 분석)

  • Yeom, Seung-Yong;Kim, Hongrae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.413-421
    • /
    • 2015
  • Since the first Cubesat was launched in 2003, there have been more than 230 Cubesats launched so far. Due to their small size and lightweight, Cubesats were launched by utilizing the empty space of regular launch vehicle. However, this launch method has a weakness that has been easily affecting by the schedule of major payloads. As a new solution to this problem, it has been proposed that a robot arm installed on ISS would be used to launch Cubesats. The orbits of Cubesat deployed from the ISS in various angles and directions are analyzed in this paper. We also analyze the possibility of collision between the Cubesat and ISS within the operational orbit of the CubeSat and eventually calculate the optimal angle of a robot arm, which maximizes the lifetime of Cubesat and minimizes the risk of collision between the Cubesat and ISS.

Measurement of RF Environment for CubeSat Ground Stations in Korea (국내 큐브위성 지상국 전파환경 측정)

  • Guee Won, Moon;Cheol Hea, Koo;Seongyun, Lee;In Hoi, Koo;Sang Il, Ahn
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.81-89
    • /
    • 2022
  • This study measured the radio environment of 10 domestic institutions with CubeSat ground stations for 24 hours in three frequency bands (VHF/UHF/S-band) allocated by the International Telecommunication Union (ITU). The impact of the RF environment around the ground stations on CubeSat downlink frequencies was analysed and compared with acceptable interference noise requirements from the CubeSat RF link. The findings indicate that not only the selection of downlink frequency but also the configuration of RF communication link design and ground station system of CubeSat should consider the S-band RF environment around the ground station due to the presence of several wireless devices.

Development and Verification of Modular 3U Cubesat Standard Platform (3U 큐브위성 표준 플랫폼의 개발)

  • Song, Sua;Lee, Soo-Yeon;Kim, Hongrae;Chang, Young-Keun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.65-75
    • /
    • 2017
  • This study proposes development of 3U CubeSat standard platform whose function and performance are verified via KAUSAT-5 development. 3U CubeSat platform specification was selected for the design of 3U Cubesat standard platform by examining existing CubeSat and state-of-art technology, and consequently a universally usable 3U CubeSat platform was designed. Standard platform was manufactured in 1.5U size and developed with a modular concept to be able to add and expand payloads and ADCS actuators for meeting the user's needs. In addition, in case of the power system, the solar panel, the battery, and the deployment mechanism are designed to be configured by the user. In the mechanical system design of a standard platform, subsystem and micro equipment functions/performance could be integrated and miniaturized on micro-sized PCBs and maximized electrical capability to accommodate multiple payloads. In the development of the 3U CubeSat, the satellite platform adopts the developed standard platform, which can reduce the cost and schedule for the whole satellite development by reducing the additional function verification.