• Title/Summary/Keyword: 쿼드분석

Search Result 47, Processing Time 0.024 seconds

Spike Rejection Method for Improving Altitude Control Performance of Quadrotor UAV Using Ultrasonic Rangefinder (초음파 거리계를 이용하는 쿼드로터 무인항공기의 고도 제어 성능 향상을 위한 스파이크 제거 기법)

  • Kim, Sung-Hoon;Choi, Kyeung-Sik;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this paper, a stationary wavelet transform method is proposed for improving the altitude control performance of quadrotor UAV using an ultrasonic rangefinder. A ground tests are conducted using an ultrasonic rangefinder that is much used for vertical takeoff and landing. An ultrasonic rangefinder suffers from signal's spike due to specular reflectance and acoustic noise. The occurred spikes in short time span need to be analyzed at both sides time and frequency domain. It was known that stationary wavelet transform is the transferring solution to the problem occurred by down sampling from DWT also more efficient to remove noise than DWT. The analyzed spikes of the ultrasonic rangefinder using a stationary wavelet transform and experimental results show that it can effectively remove the spikes of the ultrasonic rangefinder.

Piecewise Image Denoising with Multi-scale Block Region Detector based on Quadtree Structure (쿼드트리 기반의 다중 스케일 블록 영역 검출기를 통한 구간적 영상 잡음 제거 기법)

  • Lee, Jeehyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • This paper presents a piecewise image denoising with multi-scale block region detector based on quadtree structure for effective image restoration. Proposed piecewise image denoising method suggests multi-scale block region detector (MBRD) by dividing whole pixels of a noisy image into three parts, with regional characteristics: strong variation region, weak variation region, and flat region. These regions are classified according to total pixels variation between multi-scale blocks and are applied principal component analysis with local pixel grouping, bilateral filtering, and structure-preserving image decomposition operator called relative total variation. The performance of proposed method is evaluated by Experimental results. we can observe that region detection results generated by the detector seems to be well classified along the characteristics of regions. In addition, the piecewise image denoising provides the positive gain with regard to PSNR performance. In the visual evaluation, details and edges are preserved efficiently over the each region; therefore, the proposed method effectively reduces the noise and it proves that it improves the performance of denoising by the restoration process according to the region characteristics.

Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload (유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계)

  • Lee, Dongwoo;Kim, Lamsu;Jang, Kwangwoo;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.749-757
    • /
    • 2021
  • In transportation missions using quadrotor, the payload may change the model parameters, such as mass, moment of inertia, and center of gravity. Moreover, if position of the payload is constantly changing during flight, the effect can adversely affect the control performances. To handle this issue, we suggest Model Reference Adaptive Control based on Linear Quadratic Regulator(LQR+MRAC) to compensate the uncertainty caused by payload. Firstly, the mathematical modeling with the fixed payload is derived. Second, Linear Quadratic Regulator (LQR) is used to design the reference model and baseline controller. Also, through the Stability method, Adaptive law is derived to estimate the model parameters. To verify the performance of proposed control scheme, we compared LQR and LQR+MRAC in situations where uncertainties exist. And, when the disturbance exist, the classic MRAC and proposed controller is compared to analyze the transient response and robustness.

Analysis on the Performance and Temperature of the 3D Quad-core Processor according to Cache Organization (캐쉬 구성에 따른 3차원 쿼드코어 프로세서의 성능 및 온도 분석)

  • Son, Dong-Oh;Ahn, Jin-Woo;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.1-11
    • /
    • 2012
  • As the process technology scales down, multi-core processors cause serious problems such as increased interconnection delay, high power consumption and thermal problems. To solve the problems in 2D multi-core processors, researchers have focused on the 3D multi-core processor architecture. Compared to the 2D multi-core processor, the 3D multi-core processor decreases interconnection delay by reducing wire length significantly, since each core on different layers is connected using vertical through-silicon via(TSV). However, the power density in the 3D multi-core processor is increased dramatically compared to that in the 2D multi-core processor, because multiple cores are stacked vertically. Unfortunately, increased power density causes thermal problems, resulting in high cooling cost, negative impact on the reliability. Therefore, temperature should be considered together with performance in designing 3D multi-core processors. In this work, we analyze the temperature of the cache in quad-core processors varying cache organization. Then, we propose the low-temperature cache organization to overcome the thermal problems. Our evaluation shows that peak temperature of the instruction cache is lower than threshold. The peak temperature of the data cache is higher than threshold when the cache is composed of many ways. According to the results, our proposed cache organization not only efficiently reduces the peak temperature but also reduces the performance degradation for 3D quad-core processors.

An Improving Method of Android Boot Speed in Multi-core based Embedded System (멀티코어 기반의 임베디드 시스템에서 안드로이드 부팅 속도 향상 방법)

  • Choi, Jin-Yong;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.564-569
    • /
    • 2013
  • The current embedded devices are growing rapidly in the multi-core, and these demand fast boot time. But method of previous boot uses core only one. The method includes parallel techniques and modification of CPU Frequency policy. Parallel methods, after analyzing the Android boot process with analysis tool, applied to location where a lot of CPU operation. CPU Frequency policy is modified for high performance of core. The proposed method was applied to S5PV310 dual core and Exynos4412 quad core embedded system. As a result of the experiment, we found that the proposed method makes boot time fast about 20.71% and 31.34% in dual core and quad core environment as compared with the previous method.

Geomagnetic Sensor Compensation and Sensor Fusion for Quadrotor Heading Direction Control (쿼드로터 헤딩 방향 제어를 위한 지자기 센서 보상 및 센서 융합)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.95-102
    • /
    • 2016
  • Geomagnetic sensors are widely utilized for sensing heading direction of quadrotors. However, measurement from a geomagnetic sensor is easily corrupted by environmental magnetic field interference and roll/pitch directional motion. In this paper, a measurement method of a quadrotor heading direction is proposed for application to yaw attitude control. In order to eliminate roll/pitch directional motion effect, the geomagnetic sensor data is compensated using the roll/pitch angles measured for stabilization control. In addition, yaw-directional angular velocity data from a gyroscope sensor is fused with the geomagnetic sensor data using a complementary filter which is a simple and intuitive sensor fusion method. The proposed method is applied to experiments, and the results are presented to prove validity and effectiveness of the proposed method.

Performance Analysis for Digital watermarking using Quad Tree Algorithm (쿼드트리 알고리즘을 이용한 디지털 워터마킹의 성능 분석)

  • Kang, Jung-Sun;Chu, Hyung-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • In this paper, digital watermarking method using quad-tree algorithm is proposed. The proposed algorithm searches the significant coefficient of the watermark by using quad-tree algorithm and inserts the watermark by the Cox's algorithm. The simulation for performance analysis of the proposed algorithm is implemented about the effect of quad-tree algorithm in wavelet domain and that of embedding watermark in each subband coefficient (HH, LH, HL) and each DWT level, and that of embedding in the lowest frequency band (LL). As a simulation result, digital watermarking using quad-tree algorithm improves the watermarking performance in comparison with inserting watermark in the significant coefficients of fixed frequency band. The watermarking performance of simultaneously embedding in HH, LH, and HL band of DWT(6 level) is better than that of different cases. In addition, insertion the watermark to the LL band about 30~60% of all watermarks improves the correlation value while PSNR performance decreases 1~3dB.

Performance Analysis for Digital watermarking using Quad-Tree Algorithm based on Wavelet Packet (웨이블렛 패킷 기반 쿼드트리 알고리즘을 이용한 디지털 워터마킹의 성능 분석)

  • Chu, Hyung-Suk;Kim, Han-Kil;An, Chong-Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.310-319
    • /
    • 2010
  • In this paper, digital watermarking method using wavelet transform and quad-tree algorithm is proposed. The proposed algorithm transforms the input image by DWT(Discrete Wavelet Transform) and AWPT(Adaptive Wavelet Packet Transform), inserts the watermark by quad-tree algorithm and the Cox's algorithm. The simulation for performance analysis of the proposed algorithm is implemented about the effect of embedding watermark in each subband coefficient (HH, LH, HL) of DWT, each DWT level, and each AWPT level. The simulation result by using DWT is compared with that using AWPT in the proposed algorithm. In addition, the effect of embedding watermark in the lowest frequency band (LL) is simulated. As a simulation result using DWT, the watermarking performance of simultaneously embedding in HH, LH, and HL band of DWT(6 level) is better than that of different cases. The result of AWPT(3 level) improves the correlation value compared to that of DWT(3 level). In addition, insertion the watermark to the LL band about 30~60% of all watermarks improves the correlation value while PSNR performance decreases 1~2dB.

Design approach of passive vibration control using damping tape for quadrotor drone in hover (제자리 비행 조건에서 쿼드로터의 감쇠 테이프를 이용한 수동적 진동 제어 설계 방법 연구)

  • Sejun Kim;Hyungmo Kim;Seongwoo Cheon;Sungjun Kim;Haeseong Cho;Lae-Hyong Kang
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • This paper presents a design approach for passive vibration control to reduce vertical vibrations transmitted to the control unit during hovering flight of a quadrotor drone. Ground vibration test simulation based on finite element model was performed for forced vibration analysis of the quadrotor drone. First, modal analysis was performed to evaluate dynamic characteristics. Forced vibration response analysis was then performed to obtain the steady-state response within the operating frequency range under the hovering flight condition. Furthermore, to obtain the vibration reduction effect, a viscous damping tape was applied at positions that could induce vibrations transmitted to the control unit under the same conditions. Such a passive vibration control approach was investigated. Relevant vibration reduction effect was assessed with respect to the application of damping materials and the attachment position.

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.