스마트 환경에서는 센서, 디스플레이, 스마트폰 등 각종 장치들이 존재하며, 이러한 장치들을 이용하여 다양한 콘텐츠가 제공될 수 있다. 그러나 방대한 양의 콘텐츠가 다수의 사용자들에게 제공되고 있지만, 대부분의 환경에서 사용자에 대한 고려가 없거나 위치, 시간 등의 간단한 요소만을 고려하고 있어 사용자를 위한 유의미한 콘텐츠 제공에 한계가 있다. 이에 본 논문에서는 사용자에게 맞춤형 콘텐츠를 제공하기 위해 사용자, 장치, 콘텐츠가 가진 상황 정보를 인지하여 콘텐츠를 추천할 수 있는 시스템인 상황인지 기반 콘텐츠 추천 시스템을 제시한다. 상황인지 기반 콘텐츠 추천 시스템은 스마트 환경의 컨텍스트를 추론하고 사용자와 콘텐츠의 정보를 이용하여 사용자의 콘텐츠별 선호도를 산출하고 사용자에게 콘텐츠를 추천한다. 이러한 시스템의 프로세스를 구축하기 위해 도메인 지식을 온톨로지 모델로 구축하고, 콘텐츠 추천 시스템을 설계 및 구현하기 위한 방법을 제시한다. 그리고 부산의 센텀시티를 도메인으로 하여 사례 연구를 진행하며 산출된 0.8730의 평균 절대값 오차를 이용하여 제시한 시스템의 콘텐츠 추천 성능의 우수성을 검증하였다.
본 연구는 학습자 및 교수자의 학습 방법 및 교수방법을 선정하는데 있어서 집단 지성 알고리즘을 적용하여 콘텐츠 추천 시스템을 개발 하여 학습자 및 교수자가 효과적인 학습을 진행하는 것을 목적으로 하고 있다. 이를 위하여 최근 쇼핑몰이나 영화등에 적용되는 추천시스템을 교육에 적용하여 교수학습 주제를 선정시 학습자 수준, 학습환경, 학습자의 상태등에 따른 적절한 학습 방법 및 교수 방법을 제공하여 학습자는 본인에게 알맞은 학습 방법을 찾는데에 더 효율적이여 교수자는 교수학습과정을 설계하는데 시간을 절약할 수 있는 시스템을 개발하였다. 최종적으로 개발된 학습 콘텐츠 추천시스템에 대한 정확성 및 효용성은 교수자 및 학습자들의 지속정인 사용으로 데이터가 쌓인 후 사용자들의 평가를 통하여 검증이 필요 할 것이다.
최근 국내의 콘텐츠 생산률이 증가함에 따라, 많은 사람들이 즐길 수 있는 콘텐츠들이 많아 졌다. 하지만 사람들은 많아진 콘텐츠로 인해, 오히려 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 이러한 문제를 해결하기 위해 다양한 방식의 새로운 서비스들이 제공 되고 있다. 추천 시스템 중에서 웹툰을 추천해주는 알고리즘으로 협업필터링 방법이 가장 많이 사용되고 있다. 협업필터링 방법에는 희박성과 확장성, 투명성의 문제점들을 가지고 있다. 따라서 본 논문에서는 협업 필터링 방법의 희박성 문제를 보완하고자 개인의 성향을 반영하여 효율이 좋은 웹툰 추천 시스템을 제안하고, 하둡 시스템에서 구현한다.
본 논문에서는 토픽 모델링 기반 TV 프로그램 유사 시청 사용자 그룹핑 및 이를 이용한 TV 프로그램 콘텐츠 추천 알고리듬을 제안하였다. 제안 기술은 토픽 모델링 기법 중 Latent Dirichlet Allocation(LDA) 방법을 이용하여 TV프로그램 시청 기록 내에서 은닉된 유사 사용자들을 그룹핑하고 이러한 유사 시청 사용자 그룹 정보를 이용하여 사용자에게 선호 TV 프로그램 콘텐츠를 자동으로 추천하는 알고리듬이다. 제안된 자동 추천 알고리듬의 성능평가를 위해 실제 TV 시청기록 데이터를 이용하여 훈련 기간과 검증 기간을 나누어 훈련 기간 동안 제안한 알고리듬을 이용하여 사용자 개인에 대한 추천 TV 프로그램 콘텐츠 목록을 생성하여 검증 기간 동안에 실제 추천된 TV프로그램을 얼마나 시청했는지를 측정하여 추천 정확도를 검증하였다.
학습자의 감성 상태가 충분히 반영되는 오프라인 수업과 달리 지금까지 대부분의 e-러닝은 학습자의 감성 정보를 수업에 효과적으로 반영하지 못했다. 이러한 한계점은 e-러닝의 학습 효과성을 저해하는 문제 중 하나로 지적되었다. 이 문제를 해결하기 위해 학습자의 뇌파를 통해 감성을 인식하고 감성 상태에 따라 적절한 학습 콘텐츠 타입을 추천하여 학습 효과를 증대 시킬 수 있는 방법론이 주목을 받고 있다. 본 논문에서는 기 수집된 학습자들의 감성(뇌파) 데이터를 분석하여 콘텐츠 타입 선호도를 파악한 후 프로파일 데이터를 활용하여 상관계수 기반 NN-Recommendation 학습 콘텐츠 타입 추천 시스템을 제안 하고자 한다. 이 시스템은 일반적인 추천시스템에서 발생하는 Cold-start 문제를 해결할 수 있으며 특히 본 연구에서는 보다나은 추천 정확도를 위해 프로파일 각 속성에 자동적으로 가중치를 부여하는 기법을 제시하여 향상된 성능을 보이게 됨을 실험을 통해 확인 하였다.
모바일 시장의 확장과 함께 멀티모달 미디어 콘텐츠의 제공을 위한 플랫폼이 다양해지고 있다. 멀티모달 미디어 콘텐츠에는 이종데이터들이 복합적으로 포함되어 있어 사용자들이 선호 콘텐츠를 선택하기 위해 시간과 노력이 요구된다. 따라서 본 논문에서는 추천을 위한 키워드 가중치를 이용한 멀티모달 미디어 콘텐츠 분류를 제안한다. 제안하는 방법은 멀티모달 미디어 콘텐츠의 텍스트 데이터에서 키워드 가중치를 통해 콘텐츠를 가장 잘 나타내는 키워드를 추출한다. 추출된 키워드를 기반으로 서브클래스를 갖는 장르 클래스를 생성하고 이에 적절한 멀티모달 미디어 콘텐츠를 분류한다. 또한 개인화된 추천을 위해 사용자의 선호도 평가를 진행하여 사용자의 콘텐츠 선호도 분석 결과를 기반으로 멀티모달 콘텐츠를 추천한다. 성능평가는 추천 결과의 정확도와 만족도를 통해 우수함을 검증한다. 이는 사용자가 선호하는 장르와 키워드를 모두 고려하여 추천하기 때문에 정확도는 74.62%, 만족도는 69.1%로 높게 나타난다.
오늘날의 인터넷은 웹 2.0 의 출현으로 인하여 콘텐츠의 생산주체가 서비스 제공자에서 서비스 수요자인 사용자들로 변화되고 있다. 이에 따라 사용자들의 경험은 콘텐츠의 품질에 큰 영향을 미치고 있으며 소셜 네트워크에서 취득한 콘텐츠는 검색으로 취득한 콘텐츠보다 신뢰를 받고 있다. 본 논문에서는 소셜 네트워크를 기반으로 사용자들에게 양질의 콘텐츠를 추천하기 위한 방법과 그 개발을 보인다. 소셜 네트워크는 XML 기반의 사용자 프로파일 기술 언어인 FOAF 를 이용하여 수집하며 이를 통해 사용자와 사용자 사이의 관계를 수집한다. 그리고 웹 콘텐츠 출판언어인 RSS를 이용하여 각 사용자들이 블로그 등을 통해 배포한 콘텐츠를 수집한다. 본 논문에서 보이는 시스템은 FOAF 와 RSS 를 기초로 입력된 키워드에 대해 사용자와 콘텐츠의 관계를 분석하고 이를 통해 콘텐츠를 추천하는 기능을 가진다. 본 논문에서 보이는 시스템은 전통적인 콘텐츠 추천 시스템과 달리 사용자가 속한 소셜 네트워크에서 콘텐츠 생산자가 대한 중요도가 반영되므로 보다 신뢰성 있는 결과를 얻을 수 있다.
최근 웰니스에 대한 관심이 대두되면서 웰니스와 IT 융합의 대표적인 연구로 웰니스를 위한 추천 시스템 등의 연구가 시도되었다. 하지만 기존 연구들은 웰니스 영역의 신체적, 정신적, 정서적, 사회적, 지적 영역 중 한 영역 또는 두 가지 이상의 영역만을 다루기 때문에 웰니스를 위한 추천 시 사용자들의 신뢰도와 만족도가 떨어지는 결과를 초래할 수 있다. 따라서 콘텐츠의 웰니스 영역별 특성을 통합하여 관리 및 분석할 수 있는 기법이 필요하다. 본 논문에서는 이를 위한콘텐츠의 메타데이터 구성과 웰니스 영역별 특성분석 방법을 제안한다. 또한 사전 설문과 제안하는 웰니스 영역별 계산 방법을 적용하여 분석한 콘텐츠의 웰니스 영역별 특성의 코사인 유사도를 분석하여 제안하는 방법의 효율성을 증명한다. 이를 통해 콘텐츠의 웰니스적 특징을 분석할 수 있고, 나아가 웰니스를 위한 맞춤화된 추천 서비스가 가능해질 것이다.
사람이 영화를 이해하는 주된 내용은 스토리이다. 따라서 영화를 검색하거나 추천하기 위해서는 스토리 차원의 영화 분석이 선행되어야 한다. 더욱이 영화 추천이나 검색을 위해서는 영화간의 스토리차원의 비교를 수행할 수 있는 방법론에 대한 연구가 필요하다. 이를 위해 본 논문에서는 등장인물 기반으로 하는 영화 정규화 방법론을 소개하고 군집화를 통해 그 의미를 고찰한다.
사회 전반에 걸쳐 소셜네트워크 서비스의 영향력이 매우 커짐에 따라 국내의 많은 기관들에서도 소셜네트워크 서비스의 도입을 통해 이용자와 소통하려는 노력을 하고 있다. 본 논문에서는 기존에 제안한 맞춤형 콘텐츠 추천 서비스에 소셜네트워크 서비스 개념을 접목한 신뢰성 있는 전시물 관련 콘텐츠 추천 서비스를 제안한다. 기존의 콘텐츠추천 방법에 비해 제안하는 서비스는 그 이용자들의 소셜네트워크 상의 관계를 활용하여 전시물 관련 콘텐츠를 효과적이고 신뢰적으로 추천해줄 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.