• 제목/요약/키워드: 콘텐츠 추천 방법

검색결과 188건 처리시간 0.028초

스마트 환경에서의 사용자 상황인지 기반 지식 필터링을 이용한 콘텐츠 추천 시스템 (Content Recommendation System Using User Context-aware based Knowledge Filtering in Smart Environments)

  • 이동우;김웅수;염근혁
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권2호
    • /
    • pp.35-48
    • /
    • 2017
  • 스마트 환경에서는 센서, 디스플레이, 스마트폰 등 각종 장치들이 존재하며, 이러한 장치들을 이용하여 다양한 콘텐츠가 제공될 수 있다. 그러나 방대한 양의 콘텐츠가 다수의 사용자들에게 제공되고 있지만, 대부분의 환경에서 사용자에 대한 고려가 없거나 위치, 시간 등의 간단한 요소만을 고려하고 있어 사용자를 위한 유의미한 콘텐츠 제공에 한계가 있다. 이에 본 논문에서는 사용자에게 맞춤형 콘텐츠를 제공하기 위해 사용자, 장치, 콘텐츠가 가진 상황 정보를 인지하여 콘텐츠를 추천할 수 있는 시스템인 상황인지 기반 콘텐츠 추천 시스템을 제시한다. 상황인지 기반 콘텐츠 추천 시스템은 스마트 환경의 컨텍스트를 추론하고 사용자와 콘텐츠의 정보를 이용하여 사용자의 콘텐츠별 선호도를 산출하고 사용자에게 콘텐츠를 추천한다. 이러한 시스템의 프로세스를 구축하기 위해 도메인 지식을 온톨로지 모델로 구축하고, 콘텐츠 추천 시스템을 설계 및 구현하기 위한 방법을 제시한다. 그리고 부산의 센텀시티를 도메인으로 하여 사례 연구를 진행하며 산출된 0.8730의 평균 절대값 오차를 이용하여 제시한 시스템의 콘텐츠 추천 성능의 우수성을 검증하였다.

집단 지성 알고리즘을 이용한 학습 콘텐츠 추천시스템 개발에 관한 연구 (Study on the development of learning content recommendation system using the algorithm of collective intelligence)

  • 김근호;김의정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.241-243
    • /
    • 2014
  • 본 연구는 학습자 및 교수자의 학습 방법 및 교수방법을 선정하는데 있어서 집단 지성 알고리즘을 적용하여 콘텐츠 추천 시스템을 개발 하여 학습자 및 교수자가 효과적인 학습을 진행하는 것을 목적으로 하고 있다. 이를 위하여 최근 쇼핑몰이나 영화등에 적용되는 추천시스템을 교육에 적용하여 교수학습 주제를 선정시 학습자 수준, 학습환경, 학습자의 상태등에 따른 적절한 학습 방법 및 교수 방법을 제공하여 학습자는 본인에게 알맞은 학습 방법을 찾는데에 더 효율적이여 교수자는 교수학습과정을 설계하는데 시간을 절약할 수 있는 시스템을 개발하였다. 최종적으로 개발된 학습 콘텐츠 추천시스템에 대한 정확성 및 효용성은 교수자 및 학습자들의 지속정인 사용으로 데이터가 쌓인 후 사용자들의 평가를 통하여 검증이 필요 할 것이다.

  • PDF

하둡에서 개인 성향을 이용한 웹툰 추천 시스템 (A Webtoon Recommendation System Using Personal Propensity in Hadoop)

  • 이건호;윤원탁;황동현;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.408-411
    • /
    • 2016
  • 최근 국내의 콘텐츠 생산률이 증가함에 따라, 많은 사람들이 즐길 수 있는 콘텐츠들이 많아 졌다. 하지만 사람들은 많아진 콘텐츠로 인해, 오히려 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 이러한 문제를 해결하기 위해 다양한 방식의 새로운 서비스들이 제공 되고 있다. 추천 시스템 중에서 웹툰을 추천해주는 알고리즘으로 협업필터링 방법이 가장 많이 사용되고 있다. 협업필터링 방법에는 희박성과 확장성, 투명성의 문제점들을 가지고 있다. 따라서 본 논문에서는 협업 필터링 방법의 희박성 문제를 보완하고자 개인의 성향을 반영하여 효율이 좋은 웹툰 추천 시스템을 제안하고, 하둡 시스템에서 구현한다.

토픽 모델링을 이용한 유사 시청 사용자 그룹핑 및 TV 프로그램 추천 알고리듬 (Topic modeling based similar user grouping and TV program recommendation for Smart TV)

  • 표신지;김은희;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.117-120
    • /
    • 2012
  • 본 논문에서는 토픽 모델링 기반 TV 프로그램 유사 시청 사용자 그룹핑 및 이를 이용한 TV 프로그램 콘텐츠 추천 알고리듬을 제안하였다. 제안 기술은 토픽 모델링 기법 중 Latent Dirichlet Allocation(LDA) 방법을 이용하여 TV프로그램 시청 기록 내에서 은닉된 유사 사용자들을 그룹핑하고 이러한 유사 시청 사용자 그룹 정보를 이용하여 사용자에게 선호 TV 프로그램 콘텐츠를 자동으로 추천하는 알고리듬이다. 제안된 자동 추천 알고리듬의 성능평가를 위해 실제 TV 시청기록 데이터를 이용하여 훈련 기간과 검증 기간을 나누어 훈련 기간 동안 제안한 알고리듬을 이용하여 사용자 개인에 대한 추천 TV 프로그램 콘텐츠 목록을 생성하여 검증 기간 동안에 실제 추천된 TV프로그램을 얼마나 시청했는지를 측정하여 추천 정확도를 검증하였다.

  • PDF

프로파일을 활용한 감성 기반 e-러닝 콘텐츠 타입 추천 (Emotion Based e-Learning Contents Type Recommendation Using Profile)

  • 신민철;정경석;최용석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.243-246
    • /
    • 2011
  • 학습자의 감성 상태가 충분히 반영되는 오프라인 수업과 달리 지금까지 대부분의 e-러닝은 학습자의 감성 정보를 수업에 효과적으로 반영하지 못했다. 이러한 한계점은 e-러닝의 학습 효과성을 저해하는 문제 중 하나로 지적되었다. 이 문제를 해결하기 위해 학습자의 뇌파를 통해 감성을 인식하고 감성 상태에 따라 적절한 학습 콘텐츠 타입을 추천하여 학습 효과를 증대 시킬 수 있는 방법론이 주목을 받고 있다. 본 논문에서는 기 수집된 학습자들의 감성(뇌파) 데이터를 분석하여 콘텐츠 타입 선호도를 파악한 후 프로파일 데이터를 활용하여 상관계수 기반 NN-Recommendation 학습 콘텐츠 타입 추천 시스템을 제안 하고자 한다. 이 시스템은 일반적인 추천시스템에서 발생하는 Cold-start 문제를 해결할 수 있으며 특히 본 연구에서는 보다나은 추천 정확도를 위해 프로파일 각 속성에 자동적으로 가중치를 부여하는 기법을 제시하여 향상된 성능을 보이게 됨을 실험을 통해 확인 하였다.

추천을 위한 키워드 가중치를 이용한 멀티모달 미디어 콘텐츠 분류 (Multimodal Media Content Classification using Keyword Weighting for Recommendation)

  • 강지수;백지원;정경용
    • 융합정보논문지
    • /
    • 제9권5호
    • /
    • pp.1-6
    • /
    • 2019
  • 모바일 시장의 확장과 함께 멀티모달 미디어 콘텐츠의 제공을 위한 플랫폼이 다양해지고 있다. 멀티모달 미디어 콘텐츠에는 이종데이터들이 복합적으로 포함되어 있어 사용자들이 선호 콘텐츠를 선택하기 위해 시간과 노력이 요구된다. 따라서 본 논문에서는 추천을 위한 키워드 가중치를 이용한 멀티모달 미디어 콘텐츠 분류를 제안한다. 제안하는 방법은 멀티모달 미디어 콘텐츠의 텍스트 데이터에서 키워드 가중치를 통해 콘텐츠를 가장 잘 나타내는 키워드를 추출한다. 추출된 키워드를 기반으로 서브클래스를 갖는 장르 클래스를 생성하고 이에 적절한 멀티모달 미디어 콘텐츠를 분류한다. 또한 개인화된 추천을 위해 사용자의 선호도 평가를 진행하여 사용자의 콘텐츠 선호도 분석 결과를 기반으로 멀티모달 콘텐츠를 추천한다. 성능평가는 추천 결과의 정확도와 만족도를 통해 우수함을 검증한다. 이는 사용자가 선호하는 장르와 키워드를 모두 고려하여 추천하기 때문에 정확도는 74.62%, 만족도는 69.1%로 높게 나타난다.

소셜 네트워크 기반의 콘텐츠 추천 시스템의 개발 (Development of contents recommendation system based on social network)

  • 배운봉;왕청;권경락;손종수;정인정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.523-526
    • /
    • 2010
  • 오늘날의 인터넷은 웹 2.0 의 출현으로 인하여 콘텐츠의 생산주체가 서비스 제공자에서 서비스 수요자인 사용자들로 변화되고 있다. 이에 따라 사용자들의 경험은 콘텐츠의 품질에 큰 영향을 미치고 있으며 소셜 네트워크에서 취득한 콘텐츠는 검색으로 취득한 콘텐츠보다 신뢰를 받고 있다. 본 논문에서는 소셜 네트워크를 기반으로 사용자들에게 양질의 콘텐츠를 추천하기 위한 방법과 그 개발을 보인다. 소셜 네트워크는 XML 기반의 사용자 프로파일 기술 언어인 FOAF 를 이용하여 수집하며 이를 통해 사용자와 사용자 사이의 관계를 수집한다. 그리고 웹 콘텐츠 출판언어인 RSS를 이용하여 각 사용자들이 블로그 등을 통해 배포한 콘텐츠를 수집한다. 본 논문에서 보이는 시스템은 FOAF 와 RSS 를 기초로 입력된 키워드에 대해 사용자와 콘텐츠의 관계를 분석하고 이를 통해 콘텐츠를 추천하는 기능을 가진다. 본 논문에서 보이는 시스템은 전통적인 콘텐츠 추천 시스템과 달리 사용자가 속한 소셜 네트워크에서 콘텐츠 생산자가 대한 중요도가 반영되므로 보다 신뢰성 있는 결과를 얻을 수 있다.

웰니스 콘텐츠 추천을 위한 메타데이터 구성 및 웰니스 특성 분석 기법 (Meta-data Configuration and Wellness Feature Analysis Technique for Wellness Content Recommendation)

  • 홍민성;이오준;이원진;이재동
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권8호
    • /
    • pp.83-93
    • /
    • 2014
  • 최근 웰니스에 대한 관심이 대두되면서 웰니스와 IT 융합의 대표적인 연구로 웰니스를 위한 추천 시스템 등의 연구가 시도되었다. 하지만 기존 연구들은 웰니스 영역의 신체적, 정신적, 정서적, 사회적, 지적 영역 중 한 영역 또는 두 가지 이상의 영역만을 다루기 때문에 웰니스를 위한 추천 시 사용자들의 신뢰도와 만족도가 떨어지는 결과를 초래할 수 있다. 따라서 콘텐츠의 웰니스 영역별 특성을 통합하여 관리 및 분석할 수 있는 기법이 필요하다. 본 논문에서는 이를 위한콘텐츠의 메타데이터 구성과 웰니스 영역별 특성분석 방법을 제안한다. 또한 사전 설문과 제안하는 웰니스 영역별 계산 방법을 적용하여 분석한 콘텐츠의 웰니스 영역별 특성의 코사인 유사도를 분석하여 제안하는 방법의 효율성을 증명한다. 이를 통해 콘텐츠의 웰니스적 특징을 분석할 수 있고, 나아가 웰니스를 위한 맞춤화된 추천 서비스가 가능해질 것이다.

등장인물 기반의 영화의 스토리 비교 방법론 연구 (Research of Methodology to Compare Movie Stories)

  • 박승보;김현식;유은순
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.41-42
    • /
    • 2015
  • 사람이 영화를 이해하는 주된 내용은 스토리이다. 따라서 영화를 검색하거나 추천하기 위해서는 스토리 차원의 영화 분석이 선행되어야 한다. 더욱이 영화 추천이나 검색을 위해서는 영화간의 스토리차원의 비교를 수행할 수 있는 방법론에 대한 연구가 필요하다. 이를 위해 본 논문에서는 등장인물 기반으로 하는 영화 정규화 방법론을 소개하고 군집화를 통해 그 의미를 고찰한다.

  • PDF

SNS 기반 전시물 관련 콘텐츠 추천 서비스 설계 및 구현 (Design and Implementation of SNS-based Exhibition-related Contents Recommendation Service)

  • 서윤득;안진호
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.95-101
    • /
    • 2012
  • 사회 전반에 걸쳐 소셜네트워크 서비스의 영향력이 매우 커짐에 따라 국내의 많은 기관들에서도 소셜네트워크 서비스의 도입을 통해 이용자와 소통하려는 노력을 하고 있다. 본 논문에서는 기존에 제안한 맞춤형 콘텐츠 추천 서비스에 소셜네트워크 서비스 개념을 접목한 신뢰성 있는 전시물 관련 콘텐츠 추천 서비스를 제안한다. 기존의 콘텐츠추천 방법에 비해 제안하는 서비스는 그 이용자들의 소셜네트워크 상의 관계를 활용하여 전시물 관련 콘텐츠를 효과적이고 신뢰적으로 추천해줄 수 있다.