• Title/Summary/Keyword: 콘크리트 파일

Search Result 119, Processing Time 0.021 seconds

Evaluation of Flexural Behavior of Hollow Prestressed Concrete Pile for Continuous Pile Wall (주열식 벽체용 중공 프리스트레스트 콘크리트 파일의 휨거동 평가)

  • Lee, Young-Geun;Jang, Min-Jun;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • In the construction site, various earth retaining systems are developed and applied to maintain stability of excavated area and structures. Among the methods, the underground continuous wall and the column-type diaphragm wall methods are especially used in construction site nearby buildings or roads. However, these methods have some disadvantages such as the difficulty of quality control and long curing time because these methods need to cast fresh concrete at the construction site. In addition, these methods are usually applied to the site for the temporary purpose. In this paper, we suggest precast hollow prestressed concrete pile for continuous pile wall system. To investigate the structural behavior of suggested pile, which is the main member of the suggested system, tests pertaining to the structural behavior and prestressing force applied in the pile are conducted. From the test results, it was found that the prestressing force measured is sufficient compared with the value obtained by the design equation and the cracking moment measured is 34% higher than the design value. In addition to the above, this precast hollow prestressed concrete pile has an additional safety margin that the maximum moment is 59.2% higher than the cracking moment which is one of the serviceability limits for the design of the system.

AN EXPERIMENTAL STUDY ON THE PRODUCTION OF HIGH-STRENGTH CONCRETE PILE IN SITE (현장생산용 고강도 콘크리트 파일에 관한 실험적 연구)

  • 박칠림;권영호;백명종;이상수;정도순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.183-188
    • /
    • 1995
  • Up to date, high-strength concrete pile which is producing in factory sells in the market. But according to the site and the construction conditions, the system to produce high-strength concrete pile directly in site is utilized in advanced country. Such the production system is the technique phenomenon very disirable in the side of quality control in site and the construction schedule, the time and the cost saving. This study is a fundamental experiment including concrete mixing design, non-autoclave curing method and the optimum condition to produce high-strengh concrete pile in site. As results of this study, High-strength concrete pile in site which target strength is 400kg/ $\textrm{cm}^2$ is able to produce it with optimum curing ciondition(75$^{\circ}C$, 9hr)and mixing design.

  • PDF

The Optimal Mixing Design of the PHC Piles Utilizing the Air Cooled Blast Furnace Slag as Coarse Aggregate (서냉 고로슬래그 굵은골재를 활용한 PHC 파일의 최적배합 및 물리적 특성)

  • Park, Yong-Kyu;Kim, Hyun-Woo;Kim, Seung-Il;Hur, Kab-Soo;Yoon, Ki-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.137-144
    • /
    • 2014
  • The PHC pile utilizing the air-cooled blast-furnace slag as coarse aggregate was studied. This research was progressed with the range from the indoor mixing design evaluation into the actual goods production. The physical properties of the PHC pile are determined to satisfy through the appropriate mixing design adjustments. However, it should eliminate the aggregates including CaO and MgO in SG when it utilize in an AC (autoclave) type manufacturing process. It satisfied the bending moment, shear strength, and compressive strength of KS F 4306 except the surface states of the pile.

A Study On Structural Behavior of Anchor Pile Precast Retaining Wall with Screw Shape Flange (나선형 플렌지가 설치된 앵커파일 프리캐스트 옹벽의 구조적 거동에 관한 연구)

  • Choi, Seung-Seon;Ahn, Tae-Bong;Kim, Woo-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.129-138
    • /
    • 2013
  • In this study, Anchor Pile Precast Retaining Wall (APC) with screw shape flange was investigated and the results were arranged for designing APC specifications. Since precast materials require special care when they are manufactured, carried or treated, more accurate design and analysis of optimized dimension are needed : thus moment distribution of front foot was checked. Through full-scale field test, form and optimal stiffening shape were obtained and through fracture test with real load, applicable load was reasonably calculated. Research result in this thesis could be used as guideline or standard of designing and constructing Anchor Pile Precast Retaining Wall with screw shape flange.

An Experimental Study on the improvement of harbor tranquility by Multi-cylinder piles Structure (다원주 파일군 구조물에 의한 항내 정온도 향상에 관한 실험적 연구)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Jeong, Dong-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2007
  • In order to control waves in coastal zones effectively, multi-cylinder piles as the economical structures are suggested. A three dimensional hydraulic model experiment was performed to investigate the hydraulic characteristics of the structure. An experimental study was carried out research the effect of wave control and harbor tranquility through the wave height analysis for the existing concrete wave breaker and the structure with acrylic multi-cylinder piles type at the same location. In the results, the effective order of harbor tranquility is shown as the wave breaker > the staggered arrangement of multi-cylinder piles > the regular arrangement of multi-cylinder piles.

Experimental Study for the Improvement of an Automated PHC Pile Head Cutter (PHC 파일 두부정리 자동화 장비 개선에 관한 실험적 연구)

  • Lee Jeong-Ho;Kim Myoung-Ho;Kim Young-Suk;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.142-151
    • /
    • 2005
  • Several advanced countries have been continually developed PHC pile cutting automation machines for improving productivity, safety and quality of the conventional PHC pile cutting work. However, the target work of the previously developed PHC pile cutting automation machines is only crushing the head of PHC pile. Dangerous grinding work is still performed by workers with seven inch hand grinder. In domestic construction industry, the PHC pile cutting work is usually performed by a crusher and three to four skilled workers. Recent analysis results of the PHC pile cutting work reveal that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is labor-intensive work. The primary objective of this study is to propose the end-effector which can effectively break PHC pile without any longitudinal cracks and to develop an automated pile cutting machine having unified grinder and crusher parts through a wide variety of laboratory and field tests. It is anticipated that the development of the automated pile cutting machine would be able to bring improvements in safety, productivity, quality as well as cost saving.

Horizontal Bearing Behavior of Group Suction Piles by Numerical Analysis (수치해석을 이용한 그룹형 석션파일의 수평방향 지지거동 분석)

  • Lee, Ju-Hyung;Lee, Si-Hoon;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.119-127
    • /
    • 2013
  • Recently, several researches on the development of new economical foundation types have been performed to support floating structures as many offshore structures have been constructed. This study focused on the evaluation of bearing capacity of group suction piles, which are connected by a concrete pile cap. The offshore floating structures are mainly subjected to horizontal loading, so the horizontal bearing capacities of the group suction piles were analyzed by performing 3-dimensional finite element analyses. The group suction piles are expected to behave as a rigid pile due to its shallow embedded depth. Therefore, the detailed soil modeling was necessary to simulate the bearing behavior of soils under low confining pressure. The modulus and the strength of soils were modelled to increase with effective confining pressure in soils. For the parametric study, the center-to-center spacing between piles was varied and two soil types of clay and sands were applied. The analyses results showed that the yielding load of the group pile increased with the increase of the pile spacing and the yielding load of the group piles with 5D spacing was about 3 times larger than that of the single pile with free rotation.

Development of Maintenance Simulation System and Prediction of Chloride Ion Permeation for Marine Concrete Structures (해양콘크리트 구조물의 염해 예측 및 유지보수 시뮬레이션시스템 개발)

  • Lee, Chang Su;Kim, Meyong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.64-75
    • /
    • 2013
  • As both laboratory accelerated experiment and field exposure experiment were performed, at recent, the fifth field test at five year exposures was proceeded according to long period experimental plan. Field experiment, for the adoption of the developed evaluation model, which is consisted of the analysis of chloride penetration profile at gate bridges of sea-dike completed 30 years ago was carried out during upgrading the basic evaluation model with analyzing the annual field test data. The surface concentration of chlorides was replaced to the concentration of chloride of inner concrete near the surface chlorides among his research results at basic model. Maage's suggestion function was accepted too as a diffusion coefficient of chloride after verifying the change of diffusion coefficient by analysis of annual field test data. The comparison of field data with model predictions and the estimation of remaining life time demonstrates that the proposed updated model and maintenance simulation system can be used to predict the chloride penetration profile in the marine tidal zone and appropriate repair period and cost.

Mechanical Properties of PHC Pile Concrete using Alpha-type Hemihydrate Gypsum (알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성)

  • Hong-Seop Kim;Kyoung-Su Shin;Do-Gyeum Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • In this study, the mechanical properties of PHC pile concrete using alpha-type hemihydrate gypsum were evaluated. As the replacement ratio of alpha-type hemihydrate gypsum increased, the setting time rapidly accelerated. In particular, when replacement ratio exceeded 20 %, the setting time was shortened due to rapid hydration reaction, making it impossible to secure working time. As the replacement ratio of alpha-type hemihydrate gypsum increased, the ettringite and gypsum peaks tended to increase, and it is believed that the shrinkage of concrete decreased due to the increase in the ettringite peak. At a As the replacement ratio of 5 to 15 % for alpha-type hemihydrate gypsum, the compressive strength increased or was found to be equivalent to that of OPC. But at 20 % substitution, workability deteriorated due to rapid setting, so use of the 5 to 15 % range is considered appropriate.

Mixture Study for Early-age Strength Improvement of NAC-typed High-strength Concrete Piles (NAC 방식 고강도 콘크리트 파일의 초기강도증진을 위한 배합에 대한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Due to the influence of global oil prices, industrial productivity, which oil consumption is high, was significantly reduced. AC type of high-strength PHC piles is being manufactured through twice the steam curing process and this have resulted in a significant rise for product's manufacturing costs. NAC way other types of file manufacturing process has the advantage of reducing manufacturing costs by a turn of the steam curing. Nevertheless, because the initial strength be poor than that of AC method, shipment is being after the curing period of approximately three days. In addition, the growth of the product enhance with curing period can not be avoided, as a result, cost of inventory is acting as the rise. Piles by the AC method is immediately shipped after curing, damaging problems does not occur when they are introduced to the field site (for example, pile on-site). In the case of NAC, however, at least after the curing period of three days and after expressing the strength of 80 MPa or more, they are shipped on the scene. Therefore, NAC type has problems as follows: (1) increase in moderate inventory holding costs with type and (2) breakage in the field due to lack of strength. In this study, for NAC-typed PHC files, mixing characteristics research for the strength development at 1 day equivalent to AC method were conducted and strength characteristics with changes of original materials were evaluated were also identified.