• 제목/요약/키워드: 콘크리트 탄성계수

검색결과 403건 처리시간 0.021초

고강도 콘크리트의 탄성계수 추정 (Estimation of Modulus of Elasticity in High Strength Concrete)

  • 오민호;김태완;최진웅;최걸;김형준;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.413-414
    • /
    • 2010
  • 기존 연구에 따르면 강도 증가에 따라 설계기준에서 제시하는 콘크리트의 탄성계수가 실제 탄성계수를 과대평가하고 있다고 언급하고 있으나 2007년에 콘크리트구조설계기준이 개정되었기 때문에 개정된 탄성계수 산정식에 대한 확인이 필요한 실정이다. 본 연구에서는 고강도 콘크리트의 실험을 통해 탄성계수를 제안하였으며 제안식과 2003 콘크리트구조설계기준 및 2007 콘크리트구조설계기준의 탄성계수를 비교분석하였다.

  • PDF

FRP로 구속된 콘크리트 압축부재의 구속효과 분석 (Analysis of Confinement Effectiveness for FRP Confined Concrete Columns)

  • 최은수;최승환
    • 대한토목학회논문집
    • /
    • 제31권1A호
    • /
    • pp.19-24
    • /
    • 2011
  • FRP 자켓으로 콘크리트를 보강하는 경우 FRP의 탄성계수에 따라 강도증진효과가 상이하게 나타난다. 본 논문에서는 기존의 데이터를 사용하여 FRP 보강재의 탄성계수에 따른 보강효과를 분석하고, 실용적으로 사용할 수 있는 강도증진 추정모델을 제시하였다. FRP의 탄성계수는 일반 콘크리트의 압축탄성계수와 강재의 탄성계수를 기준으로 세 구간으로 구분하여 비교하였다. FRP의 탄성계수가 증가할수록 추정모델의 기울기 및 y-절편이 증가하는 것을 알 수 있었다. 또한, FRP의 탄성계수가 콘크리트의 압축탄성계수보다 작은 경우 FRP의 보강량이 작으며 보강효과가 없는 것으로 나타났으며, 이러한 경우 선형적인 모델을 사용하기 어렵다. 따라서 본 연구에서는 FRP의 탄성계수가 콘크리트 압축탄성계수보다 약 2배 큰 것만을 사용하는 경우의 보강효과 추정모델을 제시하였다. 본 연구에서 제시한 모델은 y-절편의 구속조건 여부와 상관없이 거의 동일한 결과를 보여 주었으며, 이러한 특징은 강재보강에서도 발견되는 것으로 합리적인 결과라고 판단할 수 있다.

모서리부 차량 다축하중에 의한 콘크리트 도로 포장의 응력 분포 특성 (Stress Distribution of Concrete Pavements under Multi-Axle Vehicle Loads Applied at Pavement Edges)

  • 김성민;조병휘;이상훈
    • 한국도로학회논문집
    • /
    • 제8권4호
    • /
    • pp.13-24
    • /
    • 2006
  • 콘크리트 포장은 모서리(Edge) 부분에 차량 하중이 작용할 때 큰 응력을 받게 되며 이러한 응력은 포장의 거동 및 장기 공용성에 영향을 미친다. 따라서 본 연구는 콘크리트 포장의 유한요소 모델을 사용하여 콘크리트 포장의 모서리 부분에 복륜 단축, 복륜 복축, 복륜 삼축 등 복륜 다축 하중의 한쪽 차륜이 접하여 작용할 때 포장의 응력 분포와 최대 응력을 분석하기 위하여 수행되었다. 우선 종방향과 횡방향을 따라 응력의 분포 형태를 분석하였고, 콘크리트 슬래브의 두께, 콘크리트 탄성계수, 지반 탄성계수 등이 응력 분포에 미치는 영향을 분석하였다. 또한 하중 접지면적과 연관된 하중 접지압의 변화에 따른 콘크리트 포장의 응력 분포도 분석하였다. 그리고 콘크리트 포장에서 최대 응력이 어느 위치에서 발생하는지에 대한 연구도 수행하였다. 연구 결과 모서리부 하중에 의한 콘크리트 포장의 최대 응력은 콘크리트의 탄성계수가 증가할수록, 슬래브의 두께가 감소할수록, 그리고 지반 탄성계수가 감소할수록 증가하였다. 하중 접지압의 변화에 따른 최대 응력은 콘크리트 탄성계수와 지반 탄성계수의 크기에 따라서는 거의 일정한 변화를 보였으나 슬래브 두께는 얇아질수록 접지압에 따른 최대 응력의 변화가 뚜렷이 보였다. 최대 응력이 생기는 횡방향의 위치는 콘크리트 탄성계수와 지반 탄성계수에는 무관하게 일정하다. 하지만 슬래브의 두께는 두꺼워질수록 최대 응력의 횡방향 상 위치가 모서리에서 내부로 이동한다. 종방향의 최대 응력이 생기는 위치는 단축과 복축 하중일 경우는 축의 위치이며, 삼축 하중일 경우에는 콘크리트 탄성계수나 슬래브 두께가 증가하던지 또는 지반 탄성계수가 감소하면 최대 응력이 생기는 종방향 상 위치가 양쪽 바깥축에서 중간축의 위치로 바뀌게 된다.

  • PDF

천이영역을 고려한 콘크리트 탄성계수의 미시역학적 추정 (Micremechanics-based Evaluation of Elastic Modulus of Concrete considering Interfacial Transition Zone)

  • 송하원;조호진;변근주
    • 콘크리트학회지
    • /
    • 제10권2호
    • /
    • pp.99-107
    • /
    • 1998
  • 콘크리트는 일반적으로 수회시멘트풀과 골재로 이루어진 이상의 복합체이지만 미시적으로는 수화시멘트풀과 골재, 그리고 천이영역으로 이루어진 삼상의 복합체이다. 수화시멘트풀과 골재 사이에서 형성되는 천이영역은 국부적으로 공극률이 높으므로 콘크리트의 강성과 강도에 많은 영향을 끼친다. 본 논문에서는 이러한 천이영역의 특성을 고려하여 콘크리트의 탄성계수를 추정하기 위해 이원 삼중 내포물 모델을 제안하였다. 제안된 모델에 의한 탄성계수의 추정결과는 실험결과와 비교하여 잘 일치하였으며 제안된 모델은 실험적으로 구하기 힘든 천이영역의 특성을 구하는데 사용될 수 있다.

변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석 (Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis)

  • 김성민;심재수;박희범
    • 콘크리트학회논문집
    • /
    • 제18권5호
    • /
    • pp.695-702
    • /
    • 2006
  • 본 연구는 콘크리트 포장에 복륜 단축, 복륜 복축, 복륜 삼축 등 복륜 다축 차량 하중이 작용할 때 포장의 응력 분포와 최대 응력을 변환영역에서의 해석법을 이용하여 분석하였다. 우선 변환영역에서의 해석법을 이용한 결과와 유한요소법을 이용한 결과를 비교하여 해석법의 정확성을 파악하였다. 그리고 종방향과 횡방향을 따라 응력의 분포형태를 분석하고, 콘크리트 슬래브의 두께, 콘크리트 탄성계수, 지반 탄성계수 등이 응력 분포에 미치는 영향을 분석하였다. 또한 하중 접지면적과 연관된 하중 접지압의 변화에 따른 콘크리트 포장의 응력 분포도 분석하였으며 콘크리트 포장에서 최대 응력이 어느 위치에서 발생하는지에 대한 연구도 수행하였다. 연구 결과 다축 하중에 의한 콘크리트 포장의 최대 응력은 콘크리트의 탄성계수가 증가할수록, 슬래브의 두께가 감소할수록, 그리고 지반 탄성계수가 감소할수록 증가하였다. 이러한 변수 등이 변할 때 축수에 따른 최대 응력 비율의 변화는 대체적으로 미소하지만 지반 탄성계수가 작을 때는 축수가 증가 할수록 최대 응력 비율이 급격히 증가한다. 횡방향의 최대 응력 발생 위치는 일반적으로는 접지압이 증가하면 바깥쪽에서 안쪽으로 이동하며 콘크리트 탄성계수나 슬래브 두께가 증가하거나 지반 탄성계수가 감소할 때도 최대 응력 발생 위치는 바깥쪽에서 안쪽으로 이동한다. 종방향 상의 최대 응력 위치는 하중 접지압에 영향을 받지 않으며 단축과 복축 하중일 경우는 축의 위치이며 삼축 하중일 경우에는 콘크리트 탄성계수나 슬래브 두께가 증가하던지 또는 지반 탄성계수가 감소하면 최대 응력이 생기는 종방향 위치가 양쪽 바깥축에서 중간축의 위치로 바뀌게 된다.

하이브리드 강섬유 보강 초고성능 콘크리트의 압축거동 (Compressive Behavior of Hybrid Steel Fiber Reinforced Ultra-High Performance Concrete)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.213-221
    • /
    • 2016
  • 이 연구에서는 강섬유 혼입률에 따른 초고성능 강섬유 보강 콘크리트(UHPC)의 압축거동에 관한 연구를 수행하였으며, 실험결과를 바탕으로 강섬유 보강 콘크리트의 압축강도와 탄성계수를 제안하였다. 지름 100 mm, 높이 200 mm의 원주형 공시체에는 0, 0.5, 1.0, 1.5, 그리고 2%의 강섬유가 혼입되었다. 실험에 사용된 UHPC는 굵은골재를 사용하지 않았으며, 16 mm와 19 mm의 강섬유가 일정비율로 혼입된 하이브리드 강섬유가 사용되었다. 실험결과, UHPC의 압축강도와 탄성계수는 강섬유 혼입률에 따라 증가하는 경향을 보였다. 실험결과를 바탕으로 강섬유 보강 콘크리트의 압축강도와 탄성계수가 제안되었다. 강섬유 보강 콘크리트의 압축강도는 무보강 콘크리트의 압축강도의 함수로 제안되었으며, 탄성계수는 강섬유 보강 콘크리트의 압축강도의 함수로 제안하였다. 기존 실험값과 비교한 결과 제안된 압축강도와 탄성계수는 실험값을 비교적 잘 예측하는 것으로 나타났으며, 압축강도가 35~235 MPa인 강섬유 보강 콘크리트에 적용가능 할 것으로 판단된다.

고강도 콘크리트의 탄성계수에 미치는 배합재료의 영향평가 (Effect of Mix Ingredients on Modulus of Elasticity of High-Strength Concrete)

  • 장일영;박훈규;이승훈;김규동
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.67-75
    • /
    • 2002
  • 콘크리트 구조물의 설계 덴 해석에 있어서나 구조물 처짐 제어에 있어서 가장 중요한 재료적 변수는 탄성계수이다. 일반적으로 탄성계수는 실용적 측면에서 측정이 용이한 단위중량과 압축강도만의 함수로써 간략하게 정의되고 있다. 그러나 이러한 회귀식들은 대부분 실험자료에 대한 평균적인 의미이므로 매우 많은 불확실성이 포함되어 있어 지금까지 제시된 많은 규준식 및 실험식들이 다소의 차이가 있다. Fig. 1에서와 같이 이러한 식들은 압축강도와 탄성계수사이의 큰 상관성이 있음을 잘 나타내고 있으나, 동일한 압축강도에서 탄성계수는 크게 분산된 값으로 측정됨을 알 수 있다. 본 연구에서는 고강도 콘크리트 영역에서 탄성계수에 미치는 배합변수들의 영향을 통계적 기법을 이용하여 분석하고 이를 통하여 동일한 압축강도에서 최대의 탄성계수를 얼기 위한 방안을 구명하였다.

고강도 콘크리트의 역학적 특성에 대한 실험 연구 (An Experimental Study of Mechanical Properties of High-strength Concrete)

  • 양인환;황철성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권6호
    • /
    • pp.206-215
    • /
    • 2017
  • 이 연구에서는 고강도 콘크리트의 역학적 특성을 파악하기 위한 실험연구를 수행하였다. 80~120 MPa 범위의 압축강도를 갖는 고강도 콘크리트를 대상으로 실험연구를 수행하였다. 물-결합재비의 압축강도에 대한 영향, 시간에 따른 압축강도의 발현 및 양생조건의 압축강도에 대한 영향을 분석하였다. 또한, 양생조건에 따른 콘크리트의 탄성계수, 쪼갬인장강도 및 파괴계수 특성을 파악하였다. 탄성계수, 쪼갬인장강도 및 파괴계수의 실험결과와 기존설계코드에 의한 예측결과를 비교하였다. 콘크리트구조기준의 탄성계수 제안식은 실험값을 합리적으로 예측한다. 반면에, 콘크리트구조기준은 파괴계수 실험값을 과소평가하고 있다. ACI 363R의 쪼갬인장강도와 파괴계수 예측값과 실험값은 잘 일치하고 있다. 따라서, ACI 363R의 쪼갬인장강도와 파괴계수 예측식은 120 MPa까지의 고강도 콘크리트에 효과적으로 활용될 수 있다.

경량기포콘크리트 탄성계수의 미시역학적 추정 (Micromechanics-based Evaluation of Elastic Modulus of Lightweight Foamed concrete)

  • 조호진;송하원;변근주
    • 콘크리트학회지
    • /
    • 제9권4호
    • /
    • pp.125-135
    • /
    • 1997
  • 경량기포콘크리트란 시멘트슬러리 속에 미리 생성된 기포를 혼합시켜 양생시킴으써 동일한 체적의 보통콘크리트보다 가볍게 만든 콘크리트를 의미한다. 따라서 경량기포콘크리트는시멘트풀 결합재내에 기포가 무작위로 분포된 복합재료이다. 본 연구의 목적은 이러한경량기포콘크리트의 탄성계수 추정식을 미시역학적 이론을 바탕으로 추정하는데 있다. 이르 위해 본 논문에서는 미시역학적인 미분법에 Hansen의 수정기법을 적용한 수정미분법을 사용하여 경량기포콘크리트의 탄성계수 추정식을 제안하였다. 제안된 추정식을 사용하여 얻어진 결과는 실험결과와 잘 일치하였고 기존의 어떤 추정식보다도 우수한 결과를 보였다.

순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향 (Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete)

  • 양인환;정준영
    • 콘크리트학회논문집
    • /
    • 제28권1호
    • /
    • pp.105-113
    • /
    • 2016
  • 순환골재를 사용한 콘크리트의 재료 및 역학 특성에 관한 대부분의 연구는 압축강도 40 MPa 이하의 콘크리트에 대하여 수행되었으며, 40 MPa 이상의 순환골재 콘크리트에 대한 역학적 특성에 대한 연구결과는 미비하다. 따라서, 이 연구에서는 순환골재 사용의 확대를 위해 40 MPa 이상의 순환골재 콘크리트의 압축강도 및 역학 특성을 파악하였다. 순환골재 콘크리트의 역학 특성을 파악하기 위하여 콘크리트 압축강도 및 순환굵은골재 치환율을 실험변수로 고려하였다. 실험변수로서 콘크리트의 압축강도는 45 및 60 MPa이고, 순환골재 치환율은 30, 50, 70 및 100%이다. 실험변수에 따른 순환골재 콘크리트의 압축강도, 탄성계수, 인장강도 및 파괴계수 특성을 분석하였다. 실험결과는 고강도 콘크리트일수록 순환골재 치환율에 따른 압축강도 감소량이 작은 것을 나타낸다. 탄성계수 실험결과와 기존설계코드에 의한 탄성계수 예측결과를 비교하였으며, 설계코드에 의한 예측결과는 실험결과를 과다평가하고 있다. 반면에 설계코드에 의한 파괴계수 예측결과와 실험결과는 잘 일치한다.