• Title/Summary/Keyword: 콘크리트 충전 강관

Search Result 221, Processing Time 0.027 seconds

Structural Characteristic of Beam-to-Column Connections in Rectangular CFT Structures Considering Concrete Filling (충전성을 개선한 각형CFT 기둥-보 접합부의 구조 특성)

  • Park, Je Young;Lee, Myung Jea
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • CFT structures require a diaphragm to prevent buckling of steel at connections. An outer diaphragm has better concrete filling than a through diaphragm due to a large bore, but due to the larger size than the through diaphragm, it has poorer constructability and cooperation with building equipment. The building structure has a floor slab that was unified with the upper diaphragm, so the outer diaphragm was placed at the upper bound. Moreover, the through diaphragmwas placed at the lower connection to avoid obstruction of the building equipment. The CFT structure with the improved concrete filling showed the same structural behavior as the CFT structure with the use of the same type of diaphragms at the upper and lower connections.

Evaluation of Seismic Performance for an Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내진 성능 평가)

  • Han, Taek Hee;Kim, Sung Nam;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • Column tests were performed for a new type of column, the internally confined hollow concrete filled tube column (ICH CFT column), to evaluate its seismic performance. The seismic performances for two types of ICH CFT columns and a general solid RC column were evaluated and compared by quasi-static tests. The displacements and the lateral loads of column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, damage indices were calculated from recorded data. From the test results, the ICH CFT column shows superior seismic performances with double moment capacity and larger energy absorbing capacity over that of a solid RC column.

Tension test considering the shape change of CFT Column-to-Beam Interior Diaphragm (CFT 기둥-보 내다이아프램의 형상변화를 고려한 인장실험)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.67-75
    • /
    • 2019
  • The diaphragm used for CFT columns has a small amount of steel to be used, but has a disadvantage that welding is difficult and openings are required because the steel tube and four sides must be welded. The improved diaphragm to be examined in this study was cut into four corners by cutting the center hole for concrete filling. In the improved diaphragm, the width of the center hole is the same as that of the previous diaphragm, but the width of the diaphragm contacting the steel tube is reduced, thereby reducing the welding length by about 70% compared to the previous diaphragm. The in-plane strain of each specimen was analyzed when the same load was applied to the interior diaphragm through a simple tensile test. Using the general FEM program(ANSYS 19.2), the analysis was performed under the same conditions as the actual simple tensile test, and the load transfer between the improved diaphragm and the previous diaphragm was compared. When the width of the diaphragm is equal to or smaller than the flange width, stress is concentrated from the end of the diaphragm, and when the flange width is larger, stress is concentrated at the center.

Structural Performance of High-Strength Concrete-Filled Steel Tube Steel Columns using Different Strength Steels (이종강종을 사용한 고강도 CFT 합성부재의 구조성능)

  • Choi, In Rak;Chung, Kyung Soo;Kim, Jin Ho;Hong, Geon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.711-723
    • /
    • 2012
  • Structural tests were performed to investigate the structural performance of concrete-filled steel tube column using different strength steels in their flange and web with high-strength steel HSA800 and mild steel SM490, respectively. The test parameters included the strength of column flange and infill concrete, and effect of concrete infill. Connection between different grade steels were welded using the electrode appropriate for mild steel and verified its performance. To evaluate the behavior of test specimens, eccentric loading tests were performed and the results were compared with the prediction by current design codes. Axial load and moment carrying capacity of test specimens increased with the yield strength of compression flange and weld fracture occurred after the specimen shows full strength. The prediction result for axial load-bending moment relationship and effective flexural stiffness gave good agreement with the test result.

Seismic Performance of Built-up Concrete Filled Square Composite Column-to beam Connection with Through Diaphragm (관통형 다이아프램을 갖는 조립형 콘크리트 충전 각형 합성기둥-보 접합부의 내진성능)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Concrete filled tubular columns are widely used because the mutual reaction between the concrete and the tube improves strength and ductility of the columns. In an attempt to secure efficient use of members, built-up square columns featuring large width-thickness ratio and the use of thin steel plates are suggested in this study. In order to evaluate the structural characteristics and seismic performance of the column-to-beam connections of the new shape columns, cyclic load test of T-shaped column-to-beam connections was conducted with variables of diaphragms and concrete-filling. Moment-rotational angle relationship, dissipated energy and failure behavior were compared to evaluate stress transfer mechanism of the new shape built-up square column-to-beam connections associated with the variables.

Pull-out Resistance Capacity Evaluation of Perfobond Rib Shear Connector (유공강판 전단연결재의 인발저항성능 평가)

  • Kim, Young-Ho;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.853-859
    • /
    • 2008
  • As a new system of steel pipe pile cap reinforcement, the application of perforated flat bar bolted to the steel pipe pile head was suggested for the improvement of structural performance of footing structure. This study investigates the structural characteristics of perforated flat bar shear connectors according to shape and diameter of hole, number of rebars passing through the hole and the depth of settlement. The result shows several requirements to ensure sufficient pull-out resistance and ductility such as that the hole diameter excluding diameter of rebar should exceed the size of aggregates; the hole should be perforated with diameter as the half of plate height; and the adequate depth of settlement should be ensured for the optimal performance.

An Investigation into the Finite Element Modeling of Connections of Composited H-Beams and Concrete Filled S.H.S Columns Subjected to Compression (축력을 받는 충전콘크리트 각형강관과 콘크리트-H형강 합성보 접합부의 유한요소 모델링에 관한 연구)

  • 이종석;윤영조;김승현
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.230-238
    • /
    • 1996
  • Recently, square hollow section (S.H.S) is frequently used for column and H-section for beam of steel building structures. The connection between S.H.S column and H-beam is found to weaken the rotational restraint of the joint. Several types of detail to overcome the problem have been suggested for the connection between concrete filled S.H.S column and concrete composited H-bean In this paper, modelling technique to monitor the behavior of the connections is proposed. Then, Drucker-Prager yield criteria is introduced to simulate yield behavior of in-fill concrete while Von-Mises was used in earlier works. Gap-elements are also introduced to simulate the interaction between S.H.S columns and the in-fill concrete as in privious papers. axial forces are applied to S.H.S columns and made to vary in intensity and eccentricity.

  • PDF

The Experimental study on the behavior of precast Girder-Infilled Steel Tube Column joint (프리캐스트 보와 충전형 강관 기둥 접합부의 거동에 관한 실험적 연구)

  • 정재우;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.317-322
    • /
    • 1995
  • This study is to examine the usefulness in using precast girder-infilled steel tube column in reinforced concrete structures through the analysis of the test results, in order to develope the new composite structural system using precast girder-Infilled steel tube column, The variables of specimen are strength of concrete, the numble of hoops, the form of beam-column The variables of specimen are strength of concrete, the number of hoops, the form of beam-column joints. By raising strength of concrete and incresing number of hoops in beam-column joint, it becomes clear to take similar structure capacity to monolithic structures.

  • PDF

The Analytical Model for the Reinforcement Bar Connection in Grout-Filled Steel Pipe Sleeve (모르터 충전 강관 슬리브를 이용한 철근 이음의 해석 모델)

  • 황재호;이용재;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.519-526
    • /
    • 1997
  • The purpose of this study is to develop the analytical model for the reinforcement bar connection in group-filled steel pipe sleeve, which consists of beam elements for the reinforcement bar and shell elements for the sleeve and the mortar and spring elements for the bond stress-slip relationship. In the reinforcement bar connection using grout-filled steel pipe sleeve, the major variables are the bond stiffness between reinforcement bar and mortar($K_1$) and between sleeve and mortar($K_2$). It is nearly difficult to predict the exact bond stiffness with the experimental results. Therefore, The linearly elastic analyses using ABAQUS, FEM package show the validity of the mathematical equations for the bond stiffness and the choice of material elements in this paper. To predict the behaviour between yield and ultimate tensile strength, the nonlinear analyses must be performed henceforth.

  • PDF

Evaluation for fire resistance performance of high strength CFT with loading (재하하중에 따른 고강도 CFT의 내화성능 평가)

  • Hong, Seok-Beom;Yoo, Jo-hyeong;Kim, Woo-Jae;Lee, Ji-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.184-185
    • /
    • 2013
  • Concrete filled steel Tube(CFT) columns have great strength but also fire resistance performance due to the heat storage effect of concrete. In this research, we focus on the fire performance of CFT using 100 MPa concrete without fire protection. We use steel fiber and nylon fiber for fire resistance. We perform the fire test of CFT specimen with loading 200, 300 and 400 ton. To investigate the effect of loading to fire resistance, we compare the fire resistance time according to the loading.

  • PDF