• Title/Summary/Keyword: 콘크리트 충전

Search Result 557, Processing Time 0.028 seconds

A Study on the Anti-Spalling Performance of High-Strength Concrete Members by covered Engineered Cementitious Composite (ECC로 피복된 고강도콘크리트 부재의 폭렬억제성능에 관한 연구)

  • Lee, Jae-Young;Kim, Jae-Hwan;Han, Byung-Chan;Park, Sun-Gyu;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites (ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 5 HSC specimens are being exposed to fire, in order to exami ne the influence of vari ous parameters (such as depth of layer=20, 30, 40 mm; construction method=lining and repairing type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion (3 hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

Fire Resistance of Concrete Filled Double Skin Tubular Columns under Axial Load (일정 축력을 받는 Double CFT기둥의 내화성능 평가)

  • Chung, Sang-Keun;Kim, Sun-Hee;Lee, Seong-Hui;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • Although an uncoated CFT column with a high axial-force ratio can be used to secure fire resistance for two hours or less in low-rise buildings, it does not satisfy the three-hour-long fire resistance required in high-rise buildings. Accordingly, so that the uncoated CFT column could be used for high-rise buildings, additional measures for the improvement of its fire resistance should be proposed. In this regard, the use of a Double CFT column as a measure for improving the fire resistance of the uncoated CFT column was proposed in this paper. A fire resistance test was conducted on an uncoated CFT column and a Double CFT column in real scale, under a load. Through such test, the effect of the Double CFT column on fire resistance was evaluated and then compared with that of a variant shape of the cross-section of a steel column.

Water-repellency and Bonding Characteristics of the Cement Hydrate-Organic Acid Compound (시멘트 수화물-유기산의 결합특성과 그 Compound의 발수성)

  • Rho, Jae-Seong;Cho, Heon-Young;Hong, Seong-Soo;Choi, Jeong-Bong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.639-648
    • /
    • 1992
  • For recycling cement hydrate(CH) as waterproofers for mortar and concrete or a filler for rubber & plastics, the cement hydrates were treated with stearic acid(SA). And the bonding characteristics and the water repellency of the CH-SA compounds were investigated by using FT-IR, TGA, SEM, XRD, and contact angle measuring apparatus. Water tightness of the remitars used CH-SA compounds was also tested. The results are summarized as follows : 1) If the cement hydrates are treated with over 2.0% of stearic acid, the CH-SA compounds show very strong water repellency. 2) The stearic acids are solidified on the surfaces of cement hydrate in calcium stearate and aluminium stearate. 3) If CH-SA compounds which is cement hydrate treated with 5~10% of stearic acid are used 3%~6% in remitar, water absorption ratio and water permeatility ratio of remitar are decreased in below 30% of those of the ordinary remitar.

  • PDF

Strengths and Permeability Properties of Porous Polymer Concrete for Pavement with Different Fillers (충전재 종류에 따른 포장용 포러스 폴리머 콘크리트의 강도 및 투수 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.51-59
    • /
    • 2007
  • Recently, concrete has been made porous and used for sound absorption, water permeation, vegetation and water purification according to void characteristics. Many studies are carried out on the utilization of sewage sludge, fly ash and waste concrete to reduce the environmental load. This study was performed to evaluate the void, strength, relationship between void and strength, permeability and chemical resistance properties of porous polymer concrete for pavement with different fillers. An unsaturated polyester resin was used as a binder, crushed stone and natural sand were used as an aggregate and bottom ash, fly ash and blast furnace slag were used as fillers. The mix proportions were determined to satisfy the requirement for the permeability coefficient, $1{\times}10^{-2}$ cm/s for general permeable cement concrete pavement in Korea. The void ratios of porous polymer concrete with fillers were in the range of $18{\sim}23%$. The compressive strength and flexural load of porous polymer concrete with fillers were in the range of $19{\sim}22$ MPa and $18{\sim}24$ KN, respectively. The permeability coefficients of porous polymer concrete with fillers were in the range of $5.5{\times}10^{-1}{\sim}9.7{\times}10^{-2}$ cm/s. At the sulfuric acid resistance, the weight reduction ratios of porous polymer concrete immersed during 8-week in 5% $H_{2}SO_{4}$ were in the range of $1.08{\sim}3.56%$.

Properties of Ultra High Performance Fiber Reinforced Cementitious Composites Mixed with Limestone Powder (석회석 미분말을 혼입한 초고성능 섬유보강 시멘트복합재의 특성)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • UHPC has high performance, high strength and excellent mechanical properties. Moreover UHPC(Ultra High Performance Cementitious Composite) has advantage to reduce cross section under the same load compared with other kinds of concrete. But silica fume which is imported from foreign country has a abundant portion in UHPC mixture in comparison with normal concrete. This is one of the main reason to raise the construction cost. Superior mechanical properties of UHPC due to the optimum filling composition can be changed by replacing the very fine ingredient. The purpose of this research is to grasp the characteristic of UHPC which silica fume and silica flour is replaced with limestone powder. This experiment can be divided into three classes according to the kinds of replacement. The compressive strength and flow of all types were measured and microstructure and hydration phenomena for comparing RPC were analyzed by SEM, XRD, NMR method. As a result, the replacement can be considered to be effective by for the decrease of the UHPC structure construction cost and improvement of the fresh UHPC.

Anti-washout Grouts for Underwater Sealing of Karst Cavities and Construction Research Tendencies (수중 불분리성 그라우트 개발 기술 동향)

  • Baluch, Khaqan;Kim, Jung-Gyu;Kim, Jong-Gwan;Yu, Ji-Yun;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.46-52
    • /
    • 2020
  • Although anti-washout grouts are used extensively in underwater targets, major constraints continue to be associated with their use. These include poor bonding strength, poor pumpability, and loss of high strength in everyday engineering applications. In this study, based on the literature pertaining to self-compacted, non-dispersive, anti-washout grouts, a review of research trends in anti-washout grouts for underwater construction and sealing of karst cavities was carried out in order to determine the problems faced in this field. Grouts used under water suffer a loss of strength and bonding strength in comparison to grouts cast in air. Researchers are designing high-viscosity grouts to overcome the inrush of water and seal karst cavities; however, in doing so, they have inadvertently caused serious problems pertaining to the pumpability of these grouts and concretes in deep target locations. Thus, the majority of the anti-washout grouts and concretes that have been developed are not applicable to deep target environments, instead being suitable for only near-surface targets.

Flexural Stiffness and Characteristics of Vibration in CFT Truss Girder (CFT 트러스 거더의 휨강성 및 진동특성)

  • Chung, Chul-Hun;Song, Na-Young;Kim, In-Gyu;Jin, Byeong-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.19-30
    • /
    • 2009
  • The primary objective of the present study was to attempt to quantify the effect of the existing codes for CFT composite section on initial section flexural stiffness, based on the measured vibration frequency of CFT truss girders. The formulae for the initial flexural stiffness of the composite sections in the different codes are compared with the free vibration test results. The results of the free vibration test on the CFT truss girders are in good agreement with the analysis results when used in ACI formulae. The free vibration analysis of CFT truss girders for different f/L ratios was conducted to determine how the natural frequency of the CFT truss girder is affected by different f/L ratios. The presence of the f/L ratios in CFT truss girders alters its frequencies of vibration because of the global stiffness of the CFT girders. The frequency in horizontal modes decreases as the f/L ratio increases. However, the frequency in vertical modes increases as the f/L ratio increases.

A Study on Impact Resistance Properties with Composition Materials and Installation Conditions of Protective Panel (방호 패널의 구성 재료 및 설치 조건에 따른 내충격 특성에 관한 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2023
  • This study suggested that protective panels should be installed as sacrificial members as a safety design method for structures with potential explosions such as hydrogen charging stations to minimize direct damage to the structure and have resilience. To this end, the focus of the experiment is on quantitatively evaluating the impact of the structure when the protection panel is installed closely or spaced apart from the structure in a high-speed collision situation of the projectile. The experimental design used steel plates instead of concrete structural members mainly used in the past for excellent reproducibility, and the impact of structural members was compared and analyzed through deformation differences on the back of the steel plate. In addition, the impact of changes in the physical properties of the elastic body used as a separation material for the protective member and the difference in shock wave transmission time according to the protective member and the elastic body on the structural member was investigated.

An Alternative Perspective to Resolve Modelling Uncertainty in Reliability Analysis for D/t Limitation Models of CFST (CFST의 D/t 제한모델들에 대한 신뢰성해석에서 모델링불확실성을 해결하는 선택적 방법)

  • Han, Taek Hee;Kim, Jung Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.409-415
    • /
    • 2015
  • For the design of Concrete-Filled Steel Tube(CFST) columns, the outside diameter D to the steel tube thickness t ratio(D/t ratio) is limited to prevent the local buckling of steel tubes. Each design code proposes the respective model to compute the maximum D/t ratio using the yield strength of steel $f_y$ or $f_y$ and the elastic modulus of steel E. Considering the uncertainty in $f_y$ and E, the reliability index ${beta}$ for the local buckling of a CFST section can be calculated by formulating the limit state function including the maximum D/t models. The resulted ${beta}$ depends on the maximum D/t model used for the reliability analysis. This variability in reliability analysis is due to ambiguity in choosing computational models and it is called as "modelling uncertainty." This uncertainty can be considered as "non-specificity" of an epistemic uncertainty and modelled by constructing possibility distribution functions. In this study, three different computation models for the maximum D/t ratio are used to conduct reliability analyses for the local buckling of a CFST section and the reliability index ${beta}$ will be computed respectively. The "non-specific ${beta}s$" will be modelled by possibility distribution function and a metric, degree of confirmation, is measured from the possibility distribution function. It is shown that the degree of confirmation increases when ${beta}$ decreases. Conclusively, a new set of reliability indices associated with a degree of confirmation is determined and it is allowed to decide reliability index for the local buckling of a CFST section with an acceptable confirmation level.

Deterioration Diagnosis and Source Area of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea (감은사지 서탑의 풍화훼손도 진단 및 석재의 산지추정)

  • Lee Chan Hee;Lee Myeong Seong;Suh Mancheol;Choi Seok-Won;Kim Man Gap
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.569-583
    • /
    • 2004
  • The rock properties of the West pagoda in the Gameunsaji temple site are composed mainly of dark grey porphyritic granodiorite with medium grained equigranular texture and developed with small numerous dioritic xenoliths. These xenoliths occurred with small holes due to different weathering processes. As a weathering results, the rock properties of this pagoda occur wholly softened to physical hardness because of a complex result of petrological, meteorological and biological causes. Southeastern part of the pagoda deteriorated seriously that the surface of rock blocks showed partially exfoliations, fractures, open cavities in course of granular decomposition of minerals, sea water spray and crystallization of salt from the eastern coast. The Joint between blocks has small or large fracture cross each other, contaminated and corrupted for inserting with concrete, cement mortar, rock fragments and iron plates, and partially accelerated coloration and fractures. There are serious contamination materials of algae, fungus, lichen and bryophytes on the margin and the surface on the roof stone of the pagoda, so it'll require conservation treatment biochemically for releasing vegetation inhabiting on the surface and the discontinuous plane of the blocks because of adding the weathering activity of stones and growing weeds naturally by soil processing on the fissure zone. Consisting rock for the conservation and restoration of the pagoda would be careful choice of new rock properties and epoxy to reinforce for the deterioration surfaces. For the attenuation of secondary contamination and surface humidity, the possible conservation treatments are needed.