• Title/Summary/Keyword: 콘크리트 충전

Search Result 557, Processing Time 0.021 seconds

Resistance and Flexure Behavior of Slender Welded Built-up Square CFT Column Using Internal Reinforced Steel Tube under Eccentric Loads (강관내부 보강재를 고려한 용접조립 각형 CFT 편심 장주의 내력 및 휨 거동)

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.32-39
    • /
    • 2015
  • So far, square concrete filled tubular(CFT) columns have been used in a limited width thickness ratio. The reason is that local buckling occurs in steel tube easily. Once the local buckling occurs, the confinement effect of steel tube on concrete disappears. In this study, we developed welded built-up square steel tube with reinforcement which are placed at the center of the tube width acts as an anchor. 3 specimens of slender welded built-up square CFT columns and 3 specimens of slender welded built-up square steel tube columns were manufactured with parameters of width(B) of steel tube, width thickness ratio(B/t). we conducted a experimental test on the 6 specimens under eccentric load, and evaluated the structural resistance and behavior of 6 specimens.

P-M Relations of Slender Welded Built-up Square CFT Column under Eccentric Loads (시공성을 향상시킨 용접조립 각형 CFT 편심 장주의 P-M 관계)

  • Lee, Seong-Hui;Choi, Sung-Mo;Kim, Young-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • CFST columns are structurally superior because the concrete inside the steel tubes prevents local buckling at the tubes and the tubes confine the concrete. And, the thickness of steel tube in CFST column has been thinner with development of high-strengh steel. The thinner the steel tube of a square CFST column is, the more local buckling is likely to occur. For this reason, we developed welded built-up square steel tube with stiffeners which are placed at the center of the tube width acts as an anchor. In this study, we conduct experimental test for three specimens of the 4m long span welded built-up square CFT column with parameters of L/D and D/t. And, the test results were compared with the analysis results by M-${\phi}$-P Program.

Improvement of Dry-blasting Efficiency for Ballast used as Aggregate of Paved Track (포장궤도 골재용 도상자갈의 건식 블라스팅 효율 향상 연구)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • On the paved track, the ballast is used as aggregate for the filling layer using the pre-packed concrete technique. The most important condition of aggregate is adhesive strength with mortar. To satisfy this condition, surface of aggregate should be cleaned by water or others. In a paved-track method to be introduced domestically, an environment-friendly dry-washing technology which will replace the water-washing method has been developed. A dry-washing method was designed to blast the crushed weight material with a diameter of 0.3~0.5mm at high pressure to peel the surface of the aggregate. The study was intended to enhance the washing efficiency of dry-blasting technology and to that end, the tests including blasting material, content of fine aggregate depending on time elapsed, content of chloride, LA abrasion rate and compressive strength were conducted to recommend the efficient washing material and the process.

A Study on the Load Carrying Capacity and Energy Absorption Capacity of the Concrete Filled Steel Tube Column (콘크리트충전 강관기둥의 내력 및 변형 능력에 관한 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.121-128
    • /
    • 1997
  • It has been reported by the existing papers that the ultimate load capacity and energy absorption capacity of the CFST column are considerably higher than those resulting from a simple addition of the capacities of the concrete and the steel tube. It is normally believed that the confined effect for the infilled concrete due to the hoop tension of steel at the parameter of cross sections can remarkably improve the ductility and energy absorption capacities of the CFST columns. This paper provides the results of a study on the load-carrying capacities and energy absorption capacities of the CFST columns, a numerical analysis method, i. e. N-M interaction curves and Moment curvature relationships. The numerical approaches are verified by comparing with the existing test results and the circular and square steel tube sections are selected to clarify the amount of confinement effects to improve the ultimate deformable capacity(a ultimate strain value) of the infilled concrete. Then, an adequate value of the ultimate strain of the infilled concrete and an equation of the ultimate capacity of the CFST column are suggested.

  • PDF

Effects of Filler on Engineering Properties of Permeable Polymer Concrete (충전재가 투수용 폴리머 콘크리트의 공학적 성질에 미치는 영향)

  • Sung, Chan Yong;Jung, Hyun Jung;Min, Jeong Ki
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.51-60
    • /
    • 1996
  • This study was performed to evaluate the effects of filler on engineering properties of permeable polymer concrete with unsaturated polyester resin. The following conclusions were drawn; 1. The unit weight was in the range of $1.804{\sim}1.919t/m^3$, the weights of those concrete were decreased 17~22% than that of the normal cement concrete. 2. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive, 147% by tensile and 188% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2,722~3,060m/sec, which was showed about the same compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher pulse velocity. 4. The water permeability was in the range of $3.076{\sim}4.152{\ell}/cm^2/h$, and it was larglely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 5. The compressive strength, tensile strength, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight. But, it was decreased with the increase of water permeability, respectively.

  • PDF

Tensile Behavior Analyses of Tubular Column to H-Beam Connections with T-Stiffeners (외부 T 스티프너를 이용한 각형강관기둥-H 형강보 접합부의 인장거동 해석)

  • Shin, Kyung Jae;Kwon, Young Ran
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.69-78
    • /
    • 2002
  • This paper describes the analysis results for tensile behavior of tubular column to H-beam connection with T stiffeners. Using the elasto-plastic finite element method, analysis results are compare with experimental results. Parametric analyses with different size of T-stiffener have conducted to understand the stress distribution at the connections. Stress concentration in elastic region and PEEQ distribution in plastic region are plotted for different shape. The results of analysis were applied to design equations and were checked for the applicability of design equations.

An Experimental Study on the Evaluation of Mechanical Properties of CFT Column by Unstressed Test and Stub Specimen (비재하 가열시험 및 Stub 시험체를 활용한 CFT기둥의 역학적 특성평가에 관한 실험적 연구)

  • Lee, Dae-Hee;Lee, Tae-Gyu;Lee, Eui-Bae;Kim, Young-Sun;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.209-213
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) because material and method are required to be diversification and High-Performance according to increase the super-high structure. But, CFT column lose bearing capacity under fire because steel tube is exposed to outside. As a result, structure is collapsed and then it cause much damage. In case of the Europe, Japan and America, they have studied the fire-resistance performance of CFT under fire for a long time. However, it would have hardly studied it in domestic because it is much difficulty about experiment machine and cost. So it is needed base on fire-resist performance of CFT under fire. Therefore, this study dynamic specificity of stub column which made tester of stub column based on facts of strength and mixing fiber evaluated used heating and load testing machine. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

Axial Loading Behaviors and ACI 440 Code Applied Ultimate Axial Strength Formula of CFRP Strengthened Circular CFT Columns (탄소섬유쉬트로 보강된 원형CFT기둥의 압축거동과 ACI 440 code를 응용한 압축내력예측식 제안)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • This study investigates the axial behavior of CFRP strengthened circular CFT columns and proposes the design formula of CFRP strengthened circular CFT columns. 10 specimens were prepared and axial loading test were conducted to investigate the retrofitting effects of CFRP composites on CFT columns. The main parameters are the number of FRP sheets and D/t ratio. Test results showed that the CFRP retrofitting enhanced the load bearing capacity of the circular CFT columns. Finally, A ACI 440 code applied ultimate axial strength formula is proposed to predict the ultimate strength of CFRP strengthened circular CFT columns. The proposed formula are good agreement with the test results.

Behavior of CFT Column to H-Beam Full-Scale Connections with External T-Stiffeners (T-스티프너 보강 CFT 기둥 - H형강보 실대형 접합부의 거동)

  • Kim, Young Ju;Kang, Chang Hoon;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.715-723
    • /
    • 2001
  • This paper represents the behavior of CFT column to H-beam full-scale connection with external T-stiffener. 6 specimens whose T-stiffeners which are compounded of vertical element and horizontal element were made under the parameter of the strength ratio of each elements(vertical element and horizontal element in T-stiffener) to the beam full plastic moment. The analysis-parameters demonstrated in the base of the data that we get in experiment are strength stiffness, and plastic rotational capacity. All of specimen showed stable hysteretic behavior, and the horizontal element is more critical than vertical element in strength and stiffness. The mean beam plastic rotation of all specimen except the TS-2 specimen is 2.97% rad.

  • PDF

Experimental Study on Compressive Strength of Centrally Loaded Concrete Filled Square Tubular Steel Columns (중심축압(中心軸壓)을 받는 콘크리트충전(充塡) 각형강관(角形鋼管)기둥의 내력(耐力)에 관한 실험적(實驗的) 연구(硏究))

  • Kim, Jong Sung;Oh, Yun Tae;Kwon, Young Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.59-76
    • /
    • 1996
  • Concrete filled steel tube column has a large load carrying capacity through its steel and concrete interaction which makes it useful in construction. However, it has not been used often in a practical construction field. This is partly due to the non-destructive inspection method for concrete filling which has yet to be established. Furthermore, there are the lack of test data and a practical method in evaluating the ultimate load carrying capacity of concrete filled steel tube column. This paper will attempt to predict the ultimate strength of short concrete filled square tubular steel columns through conducting several tests. To accumulate the new test data on concrete filled steel tube columns, a total of 42 specimens of steel tubular columns were monotonically tested under concentric axial force, having the slenderness ratio(${\lambda}=10,\;15,\;20$), width-thickness ratio(d/t=25.0, 33.3) and concrete strengths($F_{c}=210,\;240,\;270kg/cm^{2}$). The hollow sections and concrete filled steel columns were compared to check the lateral confinded effects by steel tube. Through these test results, we propose a coefficient k=3.64 for the strength evaluation formula(10) of concrte filled tubular steel short columns.

  • PDF