• Title/Summary/Keyword: 콘크리트 응결시간

Search Result 164, Processing Time 0.024 seconds

Properties of High-Performance Concrete Containing High - Reactivity Metakaolin (고반응성 메타카올린을 사용한 고성능 콘크리트의 특성)

  • 원종필;권연성;이존자
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • This research deals with the properties of fresh and hardened high-performance concrete(HPC) incorporating high-reactivity metakaolin(HRM). The properties of fresh and hardened state concrete were investigated included air content, slump flow, setting time, heat of hydration, compressive strength, resistance to chloride-ion penetration, abrasion and repeated freezing and thawing. The properties of the HRM concrete were also compared with those of the portland cement concrete and silica fume(SF) concrete. The laboratory test results indicate that HRM material can be used as a supplementary cementitious material to produce high-performance concrete.

The Experimental Study on the Properties of Cement Paste According to the Replacement Ratios of Waste Concrete Powder and the Changes of Particle Size (폐콘크리트 미립분 대체율 및 입도 변화에 따른 시멘트 페이스트의 특성에 관한 연구)

  • Lee, Dae-Geun;La, Jeong-Min;Kang, Cheol;Kang, Ki-Woong;Lee, Do-Heun;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.341-342
    • /
    • 2009
  • In this study, various tests were performed such as setting time, flow, F1exural strength and compressive strength test to evaluate the effect according to the substitution of the replacement ratio of waste concrete powder and the change of particle size

  • PDF

Influence of Blast Furnace Slag and Anhydrite on Strength of Shotcrete (고로슬래그와 무수석고가 숏크리트의 강도에 미치는 영향)

  • Ryu, Sung-Hee;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • This study investigated the compressive strength, flexural strength, setting time, and rebound when blast furnace slag and anhydrite, which are widely used mineral admixtures for concrete, are applied to shotcrete. When Ordinary Portland Cement (OPC) was replaced at a rate of 10% with blast furnace slag and anhydrite, the initial and final setting time requirements were all satisfied. However, when OPC was replaced at a rate of 20%, final setting was delayed, revealing that this mixture was not suitable for shotcrete. Compressive strength test results showed that the mixture with 10% OPC replacement rate met the target strength at 1 day and 28 days for permanent tunnel support usage. Particularly, the mixture designed with OPC replacement by blast furnace slag and anhydrite at rates of 5% showed the highest compressive strength. Rebound measurements revealed that this mixture exhibited excellent performance with 23% reduction in the rebound compared to the shotcrete that was produced with only OPC binder.

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

Effect of Alkali Activators on Early Compressive Strength of Blast-Furnace Slag Mortar (고로슬래그 모르타르의 초기 강도에 대한 알칼리자극제의 영향)

  • Moon, Han-Young;Shin, Dong-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.120-128
    • /
    • 2005
  • In the construction industry, due to the cost rise of raw material for concrete, we have looked into recycling by-products which came from foundry. When using the Ground Granulated Blast-Furnace Slag(SG), it is good for enhancing the qualities of concrete such as reducing hydration heat, increasing fluidity, long-term strength and durability, but it has some problems : construction time is increased or the rotation rate of form is decreased due to low development of early strength. In this study, therefore, to enhance the early strength of SG mortar, we used some alkali activators(KOH, NaOH, $Na_2CO_3$, $Na_2SO_4$, water glass, $Ca(OH)_2$, alum. This paper deals with reacted products, setting time, heat evolution rate, flow and the strength development of SG cement mortar activated by alkali activators. From the results, if alkali activators were selected and added properly, SG is good for using as the materials of mortar and concrete.

A Study on Properties of Retarder via Tabletting Method (정제화 방법을 이용한 응결 지연제의 특성에 관한 연구)

  • Ryou, Jae-Suk;Yang, Neung-Won;Lee, Yong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • When hot weather concrete is utilized, the cooling methods of cooling pipe, liquid nitrogen, ice, etc., are used to prevent the poor consistency and cold joint due to high temperature. These methods, however, spike the production cost and energy consumption, and make quality control difficult. Among these methods is one that involves the use of a retarder. Although economical, retarder is caused difficulty of retarded hardening and setting time control due to inaccurate weighing and poor working condition. Therefore, how to make a tablet for hot weather concrete, as with the existing pharmacy and foods, is discussed in this study, including the following items: mortar setting time, flow test by elapsed time, physical and mechanical properties of concrete. As a result, gluconic acid is superior to lignosulfonic acid and the possibility of using them for such purpose without quality degradation was confirmed in this study, when retarder is tabletting.

A Method on the Control of Hydration Heat of Mass Concrete Considering Difference of Setting Time (응결 시간차를 활용한 매스 콘크리트의 수화열 조정 공법)

  • 심보길;윤치환;오선교;최주석;한천구
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • 종전의 경우 건축물의 기초 구조는 직접 기초 및 말뚝 기초 등이 많이 활용되었으나 최근에는 말뚝 기초의 경우 소음, 진동 등의 환경 문제가 중요시됨에 따라 대부분 매트 기초로 시공하는 경우가 많아졌다. 따라서, 기초 부분의 매트 콘크리트 시공은 환경 문제를 해결하고 건물의 하부구조를 안전하게 지탱하게 하는 역할은 만족되었지만. 두께가 80cm를 넘어 매스 콘크리트로 되는 경우가 많아 수화열에 의한 균열 문제 등은 콘크리트의 품질 확보에 있어 새롭게 해결해야만 하는 중요한 과제로 등장하고 있다.(중략)

Field Application of Mass Concrete Using Setting Time Difference of Super Retarding Agent for Reduction of Hydration Heat (초지연제의 응결시간차를 이용한 매스 콘크리트의 수화열 저감을 위한 현장 적용)

  • 전충근;심보길;손성운;신동안;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, field application of mass concrete using setting time difference of super retarding agent is reported to reduce hydration heat of concrete placed at newly constructed apartment house in Busan. Horizontal placing lift is applied. According to test results. slump and air content meets the requirement of target values. For compressive strength, it exceeds the nominal strength ordered by the costumer. Compressive strength of concrete cured in place is achieved more than the values of nominal strength at l4days. For temperature history, maximum temperature of center at top section shows 58.5$^{\circ}C$, and at bottom section, 62.6$^{\circ}C$. According to naked eye's investigation, no hydration heat crack is observed at the surface of concrete.

  • PDF

Field Application of Setting Time Difference Method Using SRA for Reduction of Hydration Heat of Mass Concrete (매스콘크리트의 수화열저감을 위한 초지연제 응결시간차 공법의 현장 적용 -대전 가오지구 코오롱 하늘채 아파트 현장-)

  • Jeon Chung-Keun;Kim Jong;Shin Dong-An;Yoon Gi-Won;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.21-24
    • /
    • 2005
  • In this paper, field application of mass concrete using setting time difference of super retarding agent is reported to reduce hydration heat of concrete placed at newly constructed apartment house in Daejeon. Horizontal placing lift is applied. According to test results,: slump and air content meets the requirement of target values. For compressive strength, it exceeds the nominal strength ordered by the costumer. For temperature history, maximum temperature of center at top section shows $25.6^{\circ}C$, and at bottom section, $35.4^{\circ}C$. According to naked eye's investigation, no hydration heat crack is observed at the surface of concrete.

  • PDF

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.