• Title/Summary/Keyword: 콘크리트 열화

Search Result 429, Processing Time 0.025 seconds

A Study on the Erosion of Concrete Immersed in Chemical Solution (화학약품용액(化學藥品溶液)에 침지(浸漬)한 콘크리트의 열화(劣化)에 대한 연구(研究))

  • Moon, Han Young;Kim, Seong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.55-66
    • /
    • 1992
  • The cement pastes, mortar and concrete specimens were immersed in artificial seawater and five kinds of chemical solution and tested the change of compressive strength and weight. The reaction products and microstructure were looked over by using X-ray, SEM and EDS. The results show that the formation of ettingite and gypsum because of penetration of ${SO_4}^{2-}$ ion are the reason for deterioration in sulfuric acid and sulphate solution. In the chlorid solution, it is found that the attack of $Cl^-$ ion on the concrete plays an important role of the deterioration of concrete.

  • PDF

Characteristics of Pore Structures and Compressive Strength in Calcium Leached Concrete Specimens (칼슘이 용출된 콘크리트의 공극 구조 및 강도 특성)

  • Yang, Eun-Ik;Choi, Yoon-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.647-656
    • /
    • 2011
  • In radioactive waste repositories constructed in underground, concrete member could be in contact with groundwater for a long time. However, this pure water creates concentration gradients which lead to the diffusion of Ca ions from the pore water and the degradation of underground concrete. Therefore, this study is aimed at investigating the alteration of pore structure and loss of compressive strength associated with dissolution. The results showed that as the leaching period became longer, the pore volume within 50 nm to 500 nm in diameter is greatly increased. Also, the volume of pores larger than 200 nm rapidly increased during initial leaching time and those below 200 nm gradually increased. Furthermore, the compressive strength gradually decreased with increase of degraded thickness. The residual strength of the degraded concrete with OPC was in the range of 33% to 58%.

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.

The Effects of Silica Sol and Modified Latex on the Concrete Surface Protection Cement Mortar for Improvement of Durability of Concrete (콘크리트 내구성 향상을 위한 표면 보호용 시멘트 모르타르에서 실리카 및 개질 라텍스의 영향)

  • Kim, Yong-Hoon;Jeaong, Cheol-Soo;Song, Myong-Shin;Lee, Woong-Geol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.715-722
    • /
    • 2019
  • The durability of concrete structures deteriorates due to the corrosion of rebars and concrete deterioration by harmful ions (CO32-, Cl-, SO42-) penetrating and diffusing from the outside into concrete. Therefore, the use of surface-protection finishing mortar is very important for preventing or delaying the deterioration of concrete. In this study, the possibility of the prevention of deterioration or delay of deterioration of concrete was investigated using natural latex modified with silica sol and calcium ions for cement mortar, which can be used to repair the mortar of deteriorated concrete or for finishing the mortar of concrete. As a result, fine calcium silicate hydrate was formed in the pores of the cement material due to the calcium ions and silica sol components contained in the modified latex component that reduce the pore distribution of the cement mortar, thereby reducing the penetration and diffusion of harmful ions (CO32-, Cl-, and SO42-). Furthermore, the latex component was found to be present in the pores of the cement to improve the alkali resistance and carbonation resistance.

Chloride Diffusion Coefficients in Cold Joint Concrete with GGBFS (고로슬래그 미분말을 혼입한 콜드조인트 콘크리트의 염화물 확산계수)

  • Oh, Kyeong-Seok;Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.44-49
    • /
    • 2016
  • Among the deteriorating agents, chloride ion is reported to be one of the most harmful ions due to its rapid diffusion and direct effect on steel corrosion. Cold joint which occurs in mass concrete placing is vulnerable to shear resistance and more severe deterioration. The paper presents an quantitative evaluation of chloride diffusion coefficient in OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) concrete containing cold joint. GGBFS concrete shows $6.6{\times}10^{-12}m^2/sec$ which is almost 30% level of OPC concrete results and the trend is repeated in the case of cold joint concrete. Compared with OPC concrete, GGBFS concrete is evaluated to have better resistance to chloride penetration, showing 0.30 times of chloride diffusion coefficient in concrete without cold joint 0.39 times with cold joint, respectively.

A Study on Characteristics of Concrete Impregnated with the Inorganic Surface Penetration Agents (무기계 표면침투제 용액으로 함침한 콘크리트의 특성 연구)

  • Bae, Ju-Seong;Kim, Hyeok-Jung;Park, Gook-Jun;Han, Jong-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • The concrete structure's durability and integrity is reduced owing to various deterioration phenomena. Therefore, it is important to prevent the deterioration phenomena. This study inquired into the various experimental results of specimens with different dilution concentration and impregnation time by the each solution to present the economic and efficient using method of the inorganic surface penetration agents. As a results, the reasonable dilution concentration and impregnation time of colloidal silica solutions are 15% and 5 minute and for the sodium alumina silicate solutions are 17% and 10 second.

Effect of Leakage on Deterioration of Concrete Lining Structure (콘크리트 라이닝 구조물의 누수에 의한 열화특성)

  • Jung, Ho-Seop;Kim, Dong-Cyou;Kim, Seong-Soo;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.287-288
    • /
    • 2009
  • In this study, the degree of deterioration on the tunnel lining concrete due to crack and leakage was evaluated by field-investigating the conventional tunnels constructed a long time ago. By examining the exterior, conducting the non-destructive test and collecting cores for the tunnel concrete linings, this study evaluated the compressive strength and the permeability, and also performed instrumental analyses.

  • PDF

Air-void Analysis of Deteriorated Jointed Concrete Pavement Using Concrete Core Specimen (코어 시편을 이용한 열화된 줄눈콘크리트 포장의 공극구조 분석)

  • Choi, Pan-Gil;Jeong, Beom-Seok;Yun, Kyong-Ku;Kwan, Soo-Ahn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.253-254
    • /
    • 2009
  • This study was conducted to estimate deterioration reason of jointed concrete pavement. Image analysis tests were performed according to ASTM C 457 using concrete core specimens. Durability factors were estimated according to spacing factor, which is related with air content and air-void information. Test results show that spacing factors of most specimens were estimated above 250$\mu$m so that investigated concrete pavement has the problem of freeze and thawing resistance.

  • PDF