• Title/Summary/Keyword: 콘크리트 구조물 해체

Search Result 84, Processing Time 0.022 seconds

Collapse Modeling of model RC Structure Using Applied Element Method (AEM을 이용한 철근콘크리트 모형 구조물의 붕괴 모델링)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In order to analyze collapse behavior of structure containing irregular and large displacement, many numerical analyses have been conducted. In this study, using a new method, Applied Element Method (AEM) for collapse analysis of structures, collapse behavior of model RC structures Is simulated. From these simulations results, displacement of X-direction (or horizontal) and displacement of Y-direction (or vertical) is similar to that of mode) RC structures. It is confirmed that collapse behavior of structures using AEN is reliable accurately simulated with that of model RC structures.

Blast Design for Explosive Demolition of Concrete Foundation (기초콘크리트 구조물의 발파해체를 위한 발파설계)

  • Park, Hoon;Park, Hyoung-Ki;Suk, Chul-Gi;Yi, Young-Seop;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • With the deterioration and functional loss of structures, there is an increasing demand for demolition and various demolition technologies have been developed. In case of a large-scale concrete foundation, application of some mechanical demolition techniques is limited because of the structural characteristics, and explosive demolition or explosive demolition combined with mechanical demolition is applied recently due to the effect to the surrounding environment by the ground vibration. In this study, we compared peak particle velocity of ground vibration depending on average fragment size in case of explosive demolition design for large-scale concrete foundation using the relation among specific charge, charge constant and transmitting medium constant as well as the relation between average concrete fragment size and specific charge.

Development of Risk Breakdown Structure of Nuclear Power Plant Decommissioning Project: Focusing on Structural Damage / Work Process Risks (원전 차폐 콘크리트 구조물 제염해체공사 리스크 분류체계 구축: 구조적 / 작업 리스크를 중심으로)

  • Kim, Byeol;Lee, Joo-Sung;Ahn, Yong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.38-45
    • /
    • 2018
  • The purpose of this study is to deduct the structural damage / work process risks factors which can be occurred during the decommissioning in the NPP containment concrete structure. To achieve these purpose, risk profile specified in the construction industry is analyzed, and the work process of NPP decommissioning and the construction project were matched based on the similarity of each works. Accordingly, human and physical risk factors are classified. Finally, the risk associated with the building structure and work process was classified as per their process activities, and risk typology explaining the disaster which put the structure, equipments, machine and workers in serious danger was developed.

A Case Study on Explosive Demolition of a Large Section Turbine Foundation Structure (대단면 터빈기초 구조물의 발파해체 시공사례)

  • Park, Hoon;Nam, Sung-Woo;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • Recently, the demand for the dismantling of large-scale industrial structures is increasing, and the construction of restoring the dismantled industrial to their original natural environment is underway. This case was an application of the explosive demolition method to the demolition of a large section turbine foundation structure which structural obsolescence and failure to meet functional requirements. As a result of the explosive demolition, the fracture condition of the turbine foundation was satisfactory, and the explosive demolition was completed without causing any damage to the surrounding facilities.

Execution Case Study on the Explosive Demolition of a Large-Section RC Special Structure (대단면 철근콘크리트 특수구조물 발파해체 시공 사례)

  • Park, Hoon;Suk, Chul-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • Recently, the number of industrial structures that must be demolished due to structural deterioration and unsatisfactory functional conditions has been increased. To minimize environmental hazardous factors created during the process of demolition, the explosive demolition method has been applied increasingly. This execution case was intended to describe an application of the explosive demolition method to the demolition of a Crusher & Screen structure, which was a large-section reinforced concrete special structure. It was deemed necessary due to its structural deterioration and unsatisfactory functional condition. Various pre-weakening processes and blasting patterns were applied to the large-section reinforced concrete members, and to reduce blasting vibration and impact vibration, time intervals were established for blasting in the same column and for blasting between blasting blocks. By applying the explosive demolition method to the demolition of a large-section reinforced concrete special structure, the explosive demolition was completed safely and efficiently, without causing any damage to surrounding facilities.

A Case of Shell Structure Demolition Using Explosives (Shell 구조물의 발파해체 사례)

  • Song, Young-Suk;Jeong, Min-Su
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.67-80
    • /
    • 2011
  • Recently, the number of structure demolitions has increased in both civil and architecture fields due to various reasons such as redevelopment of a city, utilization of sites and restoration of deteriorated structures. In the past, domestic shell structures had been constructed with brick masonry and they were not high. Therefore, their demolition had been executed with ease. Recently, however, taller reinforced concrete shell structures have become a target for the destruction. Under these circumstances, how to efficiently demolish a structure and how to minimize effects of the destruction on environment including vibration and noise have become a main issue. One of the possible solutions is the explosive demolition. In this study, a case of explosives demolition of the stack, which is located in Jeju Thermal Power Plant in Republic of Korea and is 70 m tall, is addressed. In order to fall down the structure against the desired direction, 13.5 kg dynamite and 100 electric detonators were used.

A Study on the Behavior of Blasting Demolition for a Reinforced Concrete Structure Using Sealed Model Test and Particle Flow Analysis (축소모형실험과 입자결합모델 해석을 통한 철근 콘크리트 구조물의 발파해체 거동에 관한 비교 분석)

  • 채희문;전석원
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • In this study, a comparison was made between the resulting behaviors of scaled model test and particle flow analysis for blasting demolition of a reinforced concrete structure. For the test and analysis, a progressive failure of a five-story structure was considered. The dimension analysis was carried out to properly scale down the real structure into the laboratory size. The test model was made of the mixture of gypsum, sand and water along with soldering lead to analogy reinforcing steel bars. The ratio of mixing components was chosen to best represent the scaled down strength and deformation modulus. The columns and girders of the structure were precasted in the laboratory and assembled right before the blasting test. The numerical analysis of the blasting demolition was carried out using PFC2D (Particle Flow Analysis 2-Dimension by Itasca). The results of the blasting of concrete lahmen structure showed roughly identical demolition behavior between scaled model test and numerical test. For the blasting of the reinforced concrete structure, the results were more identical and closer to the real demolition behavior, since the demolition behavior was better represented in this case due to the increased tensile strength of the component.

A Study of Radiation Distribution for Dismantling a Nuclear Facility (해체 구조물의 방사화 분포 연구)

  • Park, Hee-Seong;Hong, Sang-Bum;Lee, Kyne-Woo;Jung, Chong-Hun;Jin, Seong-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.299-302
    • /
    • 2006
  • 연구로 및 원자력 시설의 해체 공정 절차 수립과 해체 시나리오 선정에 기초 자료를 제공하고자 컴퓨터 그래픽스를 응용한 방사화 분포 가시화 연구가 수행되었다. 해체 전 시료 채취와 핵종 분석을 통해 방사능 자료가 확보된 연구로 2 호기 조사실(Exposure Room)과 조사실 주변의 콘크리트 차폐체(Concrete Shielding)를 대상으로 방사화 분포 가시화 실험이 이루어졌다. $^{60}Co$에 오염된 조사실의 벽면과 콘크리트 차폐체의 깊이 별로 조사된 방사능 농도 값을 기초로하여 이들 구조물을 3 차원으로 모델링 한 후 Contour mapping을 수행하여 방사화 분포 가시화를 완료하였다. 방사능 정도를 가시화 한 결과와 콘크리트 차폐체 깊이에 따라 지수 함수적으로 감소하고 있었던 결과가 잘 일치하고 있음을 확인할 수 있었다. 연구 결과 자료는 향후 해체 활동 중 방사선에 노출되는 작업자의 피폭선량 평가 모델에 중요한 역할을 수행할 것이다.

  • PDF

A Study on the Bond Stress of Rebar in Reinforced Concrete Pavement using Recycled Aggregate (재생골재 활용 철근콘크리트포장 내 철근의 부착특성에 대한 연구)

  • Kim, Nak-Seok;Kim, Kwang-Tae;Jeon, Chan-Ki;Jeon, Joong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.77-84
    • /
    • 2005
  • Amount of demolished concretes is highly produced as dismantlement of structures to increased owing to usage alteration and deteriorated of concrete structures, but most of them have been used as material for simple reclamation. Therefore, if demolished concrete could be recycled as aggregate for concrete. it will contribute to solve the exhaustion of nature aggregate, in terms of saving resources and protecting environment, especially being want of resources in Korea. In this study it was investigated into experimental results that were carried out demolished concrete recycled aggregate gained from dismantled real structures and source concrete recycled aggregate produced according to respectively 5 steps of replacement ratio for recycling as pavement concrete aggregate.

The Effect of Paste Rate on Shaped Charges and Metal Type Liner to Explosive Jet Cutting Ability (폭발절단력에 미치는 성형폭약 및 금속성 Liner의 가소화 영향)

  • 이병일;공창식;이익주;인영수;조영곤;박근순
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.89-97
    • /
    • 2000
  • 최근 노후화 된 콘크리트 및 털 구조물에 대하여 환경 공해가 발생하지 않는 해체 기술의 필요성이 급증하고 있어서 이에 대한 연구가 활발히 이루어지고 있다. 그 결과 콘크리트 구조물을 일시에 해체하기 위하여 사용되고 있던 화약을 이용한 발파해체공법 및 군용 폭파 공법 등으로부터 응용되어 특수한 형태의 크기로 제작된 성형폭약을 철골구조물에 부착시킨 후 이를 폭발 시켜서 순간적으로 철골구조물의 철판(또는 빔이나 기타 부자재)을 절단 해체할 수 있게 되었다. 그 동안은 성형폭약의 폭발절단 효과에 영향을 주는 요소들인 대상 구조물의 재질 및 형상, 두께와 강도 특성, 성형폭약의 형상, 폭약의 종류, 장약량, Liner의 종류, Stand-off Distance, 성형폭약의 폭 및 너비, 기폭방법에 따른 영향과 폭발 절단시 발생되는 폭풍압에 의한 진동 및 소음의 영향 등에 대한 연구가 대부분이었다. 따라서 본 연구에서는 성형폭약의 주 구성요소인 화약과 금속성 Liner를 유연성이 탁월하고 조성 성분들의 혼합성과 성형성이 우수한 가소화제를 사용하여 제작된 성형폭약의 가소화 정도가 폭발절단력에 미치는 영향을 검토하였다. 이를 위하여 본 연구는 PETN 과 RDX 화약이 각각 25wt% 및 75wt%로 흔합된 화약원료를 85wt%로 하고 폴리이소부틸렌(P.I.B) 성분이 80 wt% 이상인 폴리부텐(P.B) 7wt% 와 부틸고무 4wt% 그리고 디에칠헥실세바케이트 4wt%로 구성된 가소화제를 사용하여 실험하였다.

  • PDF