• Title/Summary/Keyword: 콘크리트 교량설계

Search Result 349, Processing Time 0.027 seconds

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

A Theoretical Study on the FRP Retrofit of Existing Circular Bridge Piers for Seismic Performance Enhancement (기존 원형교각의 내진성능 향상을 위한 FRP 보강에 대한 이론적 연구)

  • Kwon Tae-Gyu;Choi Young-Min;Hwang Yoon-Knok;Yoon Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.61-69
    • /
    • 2004
  • The bridge piers under service suffered a brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. The earthquake induced lateral force results in tension which causes bond-slip failure at the lap-spliced region in circular bridge piers. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP laminated circular tube. The retrofitted piers using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the analytical results on the seismic strengthening effect of circular bridge piers with poor lap-splice details and strengthened with FRP laminated circular tube. FRP's confinement effect is predicted by the classical elasticity solution for the laminated circular tube manufactured with several layers. The FRP laminated circular tube induces the flexural failure instead of a bond-slip failure of the circular reinforced concrete piers under seismic induced lateral forces. To investigate the correctness and effectiveness of analytical solution derived in this study, the analytical results were compared with the experimental data and it was confirmed that the results were correlated well each other, The effects on the confinement of FRP laminated circular tube, such as the number of layers, the fiber orientations, and the mechanical properties, were investigated. From the parametric study, it was found that the number of layers, the fiber orientations, and the major Young's modulus (E11) of the FRP laminated circular tube were the dominant parameters affecting the confinement of reinforced concrete circular bridge piers.

Analytical Method for Bending Moment of Slab-on-Steel-Girder Bridge (강판형교 바닥판 모멘트의 해석기법)

  • Park, Nam Hoi;Choi, Jin Yu;Yu, Chul Soo;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.17-28
    • /
    • 2000
  • The current specifications for bridge decks requires the same amount of upper and lower reinforcement mats. There have been many empirical activities that the partial elimination of upper reinforcing bars was not caused the structural integrity of a deck. A simplified method is derived based on thin plate theory for three and four-girder-span bridge decks. A simplified method for bridge deck considering the effect of girder deflection is proposed based on a closed-form solution that shows good agreement with the results of finite element models. In this research, a new design approach for deck slabs is proposed based on the simplified method. The negative bending moments in a deck can be evaluated with the simplified method based on the position of a wheel load, the aspect ratio and relative stiffness and the span length. This new approach can lead to a significant reduction of the quantity of the top reinforcing steel bars in a deck. Reducing the quantify of the top reinforcement not only reduces the construction costs for bridge decks, but also reduces the corrosion of reinforcement to a minimum.

  • PDF

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

Evaluation of Buckling in Prestressed Composite Truss Girder using ADINA Structure Analysis (ADINA 구조해석을 이용한 PCT 거더교 좌굴 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1415-1421
    • /
    • 2013
  • Recently, to resolve problems regarding legal liability for accidents and disasters, various simulation techniques such as F.E.M. and F.V.M. have been used in the field of forensic engineering. In this study, we performed mechanical structure analysis using ADINA to investigate the cause of bridge collapse accidents. Such accidents occurred owing to modified and missing processes in comparison with the original design while filling with concrete. Modified and missing processes cause buckling of the upper plate and twisting of the main girder. Through this study, we determine the exact cause of bridge collapse by comparing the evaluation of the structure stability of the original design with the evaluation of the structure stability of the modified and missing process using ADINA structure analysis. Hence, this result indicates that buckling prediction through FEA is the most effective method.

Prediction of Flexural Capacity of Steel Fiber-Reinforced Ultra High Strength Concrete Beams (강섬유 보강 초고강도 콘크리트 보의 휨강도 예측기법의 제안)

  • Yang, In Hwan;Joh, Changbin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.317-328
    • /
    • 2010
  • The method to evaluate the flexural capacity of steel fiber-reinforced ultra high strength concrete beams was proposed in this study. An experimental program was set up and fourteen beams have been tested. Test results were compared with predictions by design code and by the proposed method, respectively. It was found that predictions by using ACI 544 Committee recommendations considerably underestimate the flexural capacity. Underestimation of flexural capacity resulted from that of tensile stress block. Three-point bending test data of notched prism specimens and their inverse analysis results were incorporated into modeling of tension stress block. The ratio of the predicted to the experimental flexural capacity was in the range of 0.98 to 1.14. The present study represents that the proposed method allows more realistic prediction of flexural capacity of steel fiber-reinforced ultra high strength concrete beams.

Calculation of Creep Coefficient for Concrete Structures Applying Time Step Analysis for Relative Humidity and Temperature (상대습도 및 온도에 대한 시간 단계 해석을 적용한 콘크리트 구조의 크리프계수 산정 )

  • Kyunghyun Kim;Ki Hyun Kim;Inyeol Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.75-83
    • /
    • 2023
  • As part of a study to analyze the excessive camber occurring in prestressed concrete railway bridges, this paper presents a calculation method and analysis results for the creep coefficient which defines the increase in camber of a concrete structure over time. Using the creep coefficient formula of the design code, the coefficient is obtained by applying the climatic conditions (relative humidity and temperature) of 12 regions in Korea. The effects of differences in climatic conditions by region and starting time of load on the creep coefficient are analyzed. In order to properly calculate the creep, most of which occurs in the early stages of loading, a detailed analysis is performed by applying a time step analysis method to consider varying climate conditions through loaded period. The creep coefficient obtained by applying the average climate conditions of the region is similar to the average of the creep coefficients obtained by time step analysis. Through time step analysis, it is shown that the offset and overlap effects of relative humidity and temperature on the creep coefficient and the climate effect at the time of initial loading can be appropriately represented.

Shear Key Design of Concrete Track on Bridge (교량구간 콘크리트궤도의 전단키 설계)

  • Back, Hyo-Sun;Lee, Ho-Ryong;Bae, Sang-Hwan;Cho, Hyun-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3251-3255
    • /
    • 2011
  • Being the concrete track laid on bridge, due to track-bridge temperature difference, traction and brake force, and nosing force, the horizontal force can be applied to the track slab. Therefore, shear key structures to resist this horizontal force should be installed. The shear key structures installed in the Kyeong-Bu high-speed line are consisted of four shear keys at every slab with the length of 6 to 8m. However, in the point of view of construction, it is more advantageous to curtail the numbers of shear keys, and thus, the numbers and spacing of the shear keys should be carefully determined. In this study, hence, the effects of slab length, the numbers and spacing of the shear keys on design of shear key and track slab are examined.

  • PDF

Development for Design Program of Prestressed Concrete Slab Bridge Using VBA(Visual Basic for Application) (VBA(Visual Basic for Application)을 이용한 프리스트레스트 콘크리트 슬래브 교량의 설계 프로그램 개발)

  • Huh, Young;Hwang, Seong-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.195-202
    • /
    • 2002
  • Generally, bridge designers must consider variable factors in design of bridge-structures. For this reason, it was difficult to make a design program till now. However, the rapid development of computers turns it into a possible one with considering complex factors and the advance of computer's language make us design programming. When we use the automatic design program including structural analysis(FEM), we can save the time and effort. Additionally, the automatic design program was generated to reduce the man' errors. Therefore, in this paper, the automatic design program of the Prestressed Concrete Slab Bridge was developed. This design program will support bridge designers with time that they can spend on a creative and efficient duty for development of design.

  • PDF

Interoperability of 3D Information Models for HoNam High-speed Railway Infrastructures (호남고속철도 시설물의 3차원 정보모델의 연동성)

  • Kim, Deok-Won;Shim, Chang-Su;Lee, Kwang-Myong;Han, Shoc-Ky;Kim, Yong-Han
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1029-1034
    • /
    • 2009
  • 3자원 정보모델에 기반한 건설프로세서의 혁신이 새로운 추세가 되고 있고 고속철도와 같이 시스템엔지니어링에 해당하는 경우에는 가장 좋은 활용 사례가 될 수 있다. 정보모델은 3차원 영상에 기반하고 다양한 구성요소가 가진 기본정보와 설계와 유지관리에 이르는 생애주기 정보를 저장하고 재활용할 수 있도록 한다. 이 논문에서는 호남고속철도의 한 구간을 대상으로 이미 제안된 철도시설물정보모델의 개념에 근거하여 3차원 정보모델을 구성하였다. 구성된 정보모델에 기반하여 2차원도면, 해석, 견적, 시뮬레이션 등의 각 솔루션으로의 연동성 확보를 위한 시범사업의 결과를 정리하였다. 콘크리트 박스 교량을 대상으로 하는 시범사업을 통해서 생산성 향상 및 3차원 모델의 재활용성을 확보하였다.

  • PDF