• Title/Summary/Keyword: 콘크리트충전 강관구조

Search Result 122, Processing Time 0.031 seconds

Strength of Concrete-Filled Rectangular Steel Tubular Columns (콘크리트 충전 각형강관 기둥의 내력 평가)

  • Yoo, Yeong Chan;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.89-98
    • /
    • 1999
  • The objective of this paper is to investigate the structural behavior of concrete filled steel tubular columns subjected to eccentric load. With experiment and analytical study, the buckling behavior of columns is investigated and compared with each other to the view of main parameters. Appling foreign standards in the experimental results, we suggested new strength formula of concrete-filled steel tubular columns. The parameters are slenderness, eccentric ratio, and concrete filled or not. The experiment are carried out by simple loading.

  • PDF

A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions- (고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.177-186
    • /
    • 1998
  • The concrete filled steel tubular column have to superior in compressive load carrying capacity, compared with same section typed hollow steel tube column, and have many excellent structural properties, such as stiffness improvement by filled concrete, improvement of ductility by reinforced effect of local buckling, and the like. However, it has not clear the effect of interaction between steel tube and filled concrete, stress portion ratio and fracture mechanism of concrete. This study investigated to structural properties for high strength concrete filled steel tube column by loading conditions through a series of experiments. Especially, this study investigated the properties of structural behaviors for concrete filled steel tube column stress ratio by loading conditions and failure mechanism of filled concrete.

  • PDF

Mock-Up Test for the Concrete Filled Rectangular Steel Tube Columns of 22 m height with Flowable Concrete (고유동 콘크리트를 사용한 22 m 콘크리트 충전 각형강관기둥의 시공성능실험)

  • 안종문;신성우;전상우;김진호
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.88-95
    • /
    • 2002
  • 최근 국내에 60층을 초과하는 초고층 구조물들이 많이 건설되고 있으며, 콘크리트 품질의 향상 특히 콘크리트의 고강도화에 힘입어 이를 이용한 철근 콘크리트 고층 구조물들이 증가하고 있다. 이에 따라 이들 초고층, 초대형 구조물을 지지할 수 있는 고축력, 고연성의 기둥에 대한 설계 및 시공이 요구되고 있으며, 이에 가장 적합한 구조요소라 할 수 있는 콘크리트 충전 강관기둥(Concrete Filled Steel Tube Columns : CFT Columns)의 설계 및 시공에 관심이 높아지고 있다. 이러한 콘크리트 충전 강관기둥은 콘크리트가 강관에 의해 둘러싸여지기 때문에 축하중 저항 능력이 증가되는 장점과 동일한 단면으로 H형강을 사용한 순수 철골조 H형강 기둥의 강축(strong axis)과 약축(weak axis) 문제해결과 동시에 강성 (stiffness)을 증가시킬 수 있으며, 내화 성능이 향상되고 거푸집 대체 재료로 사용되는 등 여러 가지 장점을 지니고 있다. 한편 충전 강관기둥에 작용하는 축하중은 대부분 콘크리트가 부담하게 되는데 이러한 충전강관 기둥의 장점을 극대화하기 위해서는 보통강도 콘크리트보다는 압축강도 및 탄성계수가 큰 고강도 콘크리트의 사용은 불가피하게 된다.(중략)

Interface Behavior of Concrete Infilled Steel Tube Composite Beam (콘크리트충전 강관 합성보의 계면거동)

  • Lee, Yong-Hak;Lee, Ta;Jeong, Jong-Hyeon;Kim, Hyeong-Ju;Park, Kun-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • Interface behavior and confining effects of concrete-infilled steel tube (CFT) composite beam were investigate based on the experimental observations and numerical analyses. For this purpose, laboratory four-points bending tests were performed for the two test specimens of 1,000mm long CFT composite beams. The test beams were made of ${\phi}110mm$ and 4.5mm thick steel tube and 10mm thick steel web and bottom flange. Therefore, concrete infilled in steel tube was in compression through the entire cross section due to the web and bottom flange. Two end section conditions, with end section cap and without end section cap, were considered in experiments to monitor the relative slip displacement at ends and induce confining effects at center. In numerical aspects, finite element analysis considering steel-concrete interface behavior was performed and compared to the experimental results.

Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes (일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동)

  • Yoo, Yeong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.617-624
    • /
    • 2021
  • Concrete-filled steel tubular columns can improve the strength and deformation capacity of structures, thereby enabling the development of efficient structures. The Korean design standard (KDS41) regarding concrete-filled steel tubular structures, established by the architectural institute of Korea in 2005, was revised in 2009 and 2016. The objective was to understand the compressive strengths and deformation capacity of stub columns for concrete-filled square steel tubes under uniaxial compression and validate the KDS41's standard code for necessary corrections. Experiments were conducted on 26 specimens with parameters, such as the width-thickness ratio of cold-formed square tubes. The following values of the stub columns for concrete-filled square steel tubes were obtained: compressive strengths, relationship between the axial load and axial displacement, and failure modes. An analysis of these results enabled an understanding of the concrete-filled effect and the influence of the wide-thickness ratio. The compressive strengths of filled concrete saw a 9% increase compared to a state of uniaxial stress, which must be noted in a future edition of KDS41. After benchmarking the results regarding square steel tubes generated by cold forming to the guidelines provided by the KDS41, the KDS41's value of 2.26 for the limiting width-to-thickness ratio for the compact section was found to be inflated. With a safety concern, this paper proposes a more conservative value of 1.35.

An Analytical Investigation on the Ultimate Strength of Concrete-Filled Steel Tube Columns using Elasto-Plastic Large Deformation Analysis (탄소성 대변형 해석을 이용한 콘크리트 충전강관(CFT) 기둥의 극한강도에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.69-74
    • /
    • 2007
  • Recently, to improve performance and strength of circular steel columns, application of concrete-filled steel tube(CFT) type are gradually increased. To accurately predict the plastic design of concrete-filled steel tube columns, a plasticity model is required which can be describe large deformation behavior of concretes and steels. In this study, elastic-plastic large deformation analysis is developed by using the plasticity model of structural steels, and accurate and validity of the developed program is verified by comparing between the experiment and the analysis for concrete-filled steel tube column. In concrete-filled steel tube columns, influence of initial deflection on ultimate strength behavior is investigated by using developed program.

  • PDF

An Experimental Study on Distribution of Ultimate Strength of Concrete-Filled Steel Tube Columns according to Concrete Strength and Section Properties Ratio (콘크리트강도 및 단면특성에 따른 콘크리트 충전강관(CFT) 기둥의 극한강도 분포에 관한 실험적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • Recently, to improve the load carrying capacity of column structures such as bridge piers, application to concrete-filled steel tube(CFT) type columns are increased more and more. To design the concrete-filled steel tube(CFT) columns in accuracy, influence of material and geometry properties and aspect ratio on ultimate strength of the concrete-filled steel tube column is investigated by experimental researches. In this investigation, the ultimate strength distribution of the concrete-filled steel tube column in accordance with diameter-thickness ratio(D/t) and steel-concrete area ratio(As/Ac) are clarified by the compressive tests. Futhermore, parametric experimental investigation on concrete target strength is performed. It was known from experimental observation that ultimate strength of concrete-filled steel tube column under axial compressive loading more depends on section properties of steel tube rather than concrete strength.

  • PDF

Evaluation on Deformation Capacity of CFT Square Columns subject to Constant Axial and Cyclic Lateral Loads (일정축력과 반복 수평력을 받는 콘크리트충전 각형강관 기둥의 변형성능 평가)

  • Ji, Ku Hyun;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.209-219
    • /
    • 2000
  • Concrete Filled steel Tube(CFT) Column has an excellent structural capacities in accordance with an interaction effect between the steel tube and concrete. Recently, CFT structure has been focussed on a structural system for a high-rise buildings. The purpose of this study is to evaluate a strength and deformation capacity of CFT square columns subjected to constant axial and cyclic lateral load. The test parameters are diameters to thickness ratio of steel tube, axial load ratios, concrete strengths, load applying types and whether or not filled concrete. Total sixteen specimens are fabricated to clarify the energy absorbtion capacity of CFT columns. Experimental results are summarized for maximum strength, initial stiffness and deformation capacity.

  • PDF

A Study on the Strength of Concrete Filled Tubular Columns according to Data-Base (Data Base에 의한 CFT 기둥의 내력에 관한 연구)

  • Seo, Jeong-Hwan;Yang, Young-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.71-79
    • /
    • 2001
  • The concrete filled tubular(CFT) columns have many excellent structural properites. such as high compressive strength high ductility and high absorption capacity However the confinement effect and limiting width-thickness ratio of CFT column have not yet been clarified. Therefore. this paper aims to clarify the confinement effect of steel tubes and strength of concrete filled steel tubular columns. And this paper presents results of a probabilistic analysis based on statistical data for strength of concrete filled steel tubular columns which has been tested in Korea for recent 10 years(1991.1~2000.6).

  • PDF

Hysteresis Performance of CFT Columns subjected to Low Axial Force and Cyclic Lateral Loads (저축력과 반복수평력을 받는 콘크리트충전 강관기둥의 이력특성)

  • Choi, Sung Mo;Kang, Suk Bin;Kim, Dae Joong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.207-217
    • /
    • 2003
  • The Concrete Filled Steel Tube (M) Column has excellent structural capacities that are in accordance with the interaction effect between the steel tube and concrete. CFT structure has been focussed on a struc tural system for high-rise buildings. The purpose of this study is to evaluate the strength and deformation capacities of CFT columns that are subject to constant axial and cyclic lateral load. The test parameters are diameters to the thickness ratio of the steel tube, axial load ratios, and the shapes of the tube. Total eighteen specimens were fabricated to clarify the energy absorption capacity of the CFT columns. Experimental results were summarized for their ultimate strengths and deformation capacities.