• Title/Summary/Keyword: 콘크리트보

Search Result 2,496, Processing Time 0.026 seconds

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

Research on Strength Development of High PFA Concrete (PFA 함유량이 높은 콘크리트의 강도발현에 관한 연구)

  • 이진용
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.126-135
    • /
    • 1995
  • The strength development of PFA concretes were invest~gated in this study. The work undertaken was divided into two parts which considered both the influence of PFA replacement level up to 45% and the effect of cement type at the high PRA leveI(45%). The additiorlal cement considered included a rapdhardemng portland ccnlent. The full range of concrete struc tural grades were studied anti ciight cu~ing contlltiorls covering those 11:ied 111 practlce were examined. The early strength retluced wit11 increasing PFA content. However, post 28days, the reverse was observed. It was posslhle through the use of rapid hardening portland cement at the high PFA level to achieve similar early strength to OPC concrete, with the same benefits noted above also being obtained post 28 days. The compressive strength uf hlgh PYA content concrt:tes at hgh temperature m s found to be higher than the ccmtrol at all ages hoth in water and alr. The same trends were observed at low t.ernperature in air. However, the reverse occur-ed at the low temperature In water.

A Study on the strength evaluation for T-type Composite Beam (T형 합성보의 내력평가에 관한 연구)

  • Kim, Sang Mo;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.467-474
    • /
    • 2003
  • Composite action can be achieved by providing shear connectors between the steel top flange and concrete topping. Composite sections are stiffer than the sum of the individual stiffness of slab and beam. They can therefore carry heavier loads or similar loads with appreciably smaller deflection. They are also less prone to transient vibration. In this study, T-type Steel Composite beam (TSC-beam) was developed and tested. The test results of TSC beam were compared with the theoretical results based on composite actions.

Evaluation of Failure Mode in Concrete Beam Restrengthened with GFRP with Various Initial Conditions (GFRP로 보강된 다양한 초기 조건의 콘크리트보의 파괴 거동 평가)

  • Jin-Won Nam;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2023
  • Various failure modes occur in the concrete beams reinforced with GFRP(Glass Fiber Reinforced Plastic) under initial condition and repairing patterns. In this study, the failure behaviors of concrete beams restrengthened with GFRP sheet with slightly higher elastic modulus than concrete were investigated. For the tests, concrete beams with 24 MPa were manufactured, and the effects of initial notch, overlapping, end-strip reinforcement, and fiber anchors were analyzed on failure load. The cases of GFRP overlap around notch and the initial notch showed increasing failure loads similar to those of normal restrengthened case since the epoxy of the saturated GFRP sufficiently repaired the notch area. Compared to the control case without restrengthening of GFRP, the concrete with initial notch showed 0.78 of loading ratio and normal restrengthening showed 4.43~5.61 times of increasing ratio of failure loading, where interface-debonding from flexural crack were mainly observed. The most ideal failure behavior, break of GFRP, was observed when end-strip over 1/3 height from bottom and fiber anchor were installed, which showed increasing failure load over 150 % to normal restrengthening.

Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams (전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향)

  • Lee Jung-Yoon;Kim Wook-Yeon;Kim Sang-Woo;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.795-803
    • /
    • 2004
  • To prevent the shear failure that occurs abruptly with no sufficient warning, the minimum amount of shear reinforcement should be provided to reinforced concrete(RC) beams. The minimum amount of shear reinforcement of RC beams is influenced by not only compressive strength of concrete but also shear span-to-depth ratio and ratio of tensile longitudinal reinforcement. In this paper, 14 RC beams were tested in order to observe the influences of shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, and compressive strength of concrete. The test results indicated that the rate of shear strength to the diagonal cracking strength of RC beams with the same amount of shear reinforcement increased as the ratio of tensile longitudinal reinforcement increased, while it decreased as the shear span-to-depth ratio increased. The observed test results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation.

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

Strength and Crack-Damage Control Characteristics of Concrete Beams Layered with Strain-Hardening Cement Composites (SHCCs) (변형 경화형 시멘트 복합체로 단면 대체된 콘크리트 보의 강도 및 균열손상 제어 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Soo;Jang, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • This paper reports on the cracking mitigation and flexural behavior experimentally observed in concrete prisms layered with strain-hardening cement composites (SHCCs) which is micro-mechanically designed cement composite and exhibits pseudo tensile strain-hardening behavior accompanied by multiple cracking while using a moderate amount of fiber, typically less than 2 percent in term of fiber volume fraction. In this study, SHCC is reinforced with 1.3 percent polyvinyl alcohol (PVA) and 0.20 percent polyethylene (PE) in volume fraction. Tests were conducted using $100{\times}100{\times}400mm$ long prisms supported over a simply supported span of 350mm. The four point load was applied using MTS servo control machine. The thickness patched with SHCC is the main variable for this study. Experimental study shows that when subject to monotonic flexural loading, the SHCC layered repair system showed 2.7 - 4.2 times increased load carrying capacity, and mitigated cracking damage of concrete beams layered with SHCC compared with plain concrete beams.

  • PDF

3-D Finite Element Model for Predicting Bending and Shear Failure of RC Beams (철근콘크리트 보의 휨 및 전단파괴 예측의 3차원 유한요소 모델)

  • Cho, Chang-Geun;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.109-116
    • /
    • 2010
  • Three-dimensional finite element model for analysis of reinforced concrete members was developed in order to investigate the prediction of bending and shear failure of reinforced concrete beams. A failure surface of concrete in strain space was newly proposed in order to predict accurately the ductile response of concrete under multi-axial confining stresses. Cracking of concrete in triaxial state was incorporated with considering the tensile strain-softening behavior of cracked concrete as well as the cracked shear behavior on cracked surface of concrete caused by aggregate interlocking and, dowel action. By correlation study on failure types of bending and shear of beams, current finite element model was well simulated not only the type of ductile bending failure of under-reinforced beams but also the type of brittle shear failure of no-stirruped reinforced concrete beam.

Bonding Properties of Epoxy-Concrete Interface in RC Beams Strengthened by Steel Plate (강판으로 보강된 RC보의 에폭시-콘크리트 계면의 부착특성)

  • 박윤제;신동혁;이광명;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • Both strength and stiffness of RC structures strengthened by a steel plate greatly increase and however, their ductility might not be sufficient because premature failures usually occur at the adhesive-concrete interface. In this study, Mohr-Coulomb criterion was adopted to examine the bonding failure mechanism, and the diagonal shear bonding test, the direct shear bonding test, and the flexural test on RC beams strengthened by a steel plate were carried out to measure the bonding properties. It is found from the experimental and numerical results that the cohesive strengths of epoxy-concrete interfaces are ranging from 50 kgf/㎠ to 70 kgf/㎠ when the friction angle is 45°. Bonding failure loads can be predicted by applying the bonding properties to the structural analysis of RC beams strengthened by steel plate. By considering them in the design of strengthened beams, the premature failure would be effectively prevented.

Shear Behavior Prediction of Reinforced Concrete Beams by Transformation Angle Truss Modul (변환각 트러스 모델에 의한 철근콘크리트 보의 전단거동 예측에 관한 연구)

  • 김상우;이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.130-138
    • /
    • 2001
  • This paper presents on the shear behavior prediction of reinforced concrete beams using Transformation Angle Truss Model (TATM). The TATM can evaluate the stress-strain relationships for cracked concrete by transforming stresses and strains for principal plane into those over the crack surfaces. This proposed analytical method simplifies the Fixed Angle Softened Truss Model (FA-STM) and removes the limitation of applicability of the FA-STM. The shear.strength and strain of reinforced concrete beams are predicted by using the TATM. For the verification of proposed method, experimental results of reinforced concrete beams were compared with theoretical results by the TATM, FA-STM and Rotating Angle Softened Truss Model (RA-STM).