• Title/Summary/Keyword: 콘크리트구조설계기준

Search Result 560, Processing Time 0.027 seconds

Study on the Impact Factors and the Fundamental Frequency Using Statistics of Dynamic Load Test of Railway Bridges. (철도교의 동적 재하시험 통계자료를 활용한 고유진동수와 충격계수 연구)

  • Jung, Hyun-Jun;Kim, Gyu-Seon;Lee, Sang-Cheol;Ju, Min-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.61-62
    • /
    • 2010
  • This paper provides an analysis using statistical method on the basis of database (DB) of bridge inspection reports performed by KISTEC from 1995 to 2007. Measured impact factors of total 36 railway bridges were classified by the span length, type of bridges and natural frequency. The fundamental frequency and the impact factors of inspected bridge are compared with formulas specified in both domestic and foreign railway bridge design codes.

  • PDF

Optimization Analysis for Embodied Energy and CO2 Emission in Reinforced Concrete Column Using Sustainable Design Method (지속가능 설계법을 이용한 철근 콘크리트 기둥의 내재에너지 및 이산화탄소 배출 최적화 해석)

  • Kim, Kyeong-Hwan;Yeo, DongHun;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.265-274
    • /
    • 2017
  • This study presents a sustainable design method to optimize the embodied energy and $CO_2$ emission complying with the design code for reinforced concrete column. The sustainable design method effectively achieves the minimization of the environmental load and energy consumption whereas the conventional design method has been mostly focused on the cost saving. Failure of reinforced concrete column exhibits compressive or tensile failure mode against an external force such as flexure and compression; thus, optimization analyses are conducted for both failure modes. For the given sections and reinforcement ratios, the optimized sections are determined by optimizing cost, embodied energy, and $CO_2$ emission and various aspects of the sections are thoroughly investigated. The optimization analysis results show that 25% embodied energy and 55% $CO_2$ emission can be approximately reduced by 10% increase in cost. In particular, the embodied energy and $CO_2$ emission were more effectively reduced in the tensile failure mode rather than in the compressive failure mode. Consequently, it was proved that the sustainable design method effectively implements the concept of sustainable development in the design of reinforced concrete structure by optimizing embodied energy consumption and $CO_2$ emission.

Refined 3-Dimensional Strut-Tie Models for Analysis and Design of Reinforced Concrete Pile Caps (철근콘크리트 파일캡의 해석 및 설계를 위한 개선 3차원 스트럿-타이 모델)

  • Kim, Byung Hun;Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.115-130
    • /
    • 2013
  • The sectional methods of current design codes have been broadly used for the design of various kinds of reinforced concrete pile caps. Lately, the strut-tie model approach of current design codes also became one of the attracting methods for pile caps. However, since the sectional methods and the strut-tie model approach of current design codes have been established by considering the behaviors of structural concrete without D-regions and two-dimensional concrete structures with D-regions, respectively, it is inappropriate to apply the methods to the pile caps dominated by 3-dimensional structural behavior with disturbed stress regions. In this study, the refined 3-dimensional strut-tie models, which consider the strength characteristics of 3-dimensional concrete struts and nodal zones and the load-carrying capacity of concrete ties in tension regions, are proposed for the rational analysis and design of pile caps. To examine the validity of the proposed models and to verify the necessity of appropriate constituent elements for describing 3-dimensional structural behavior and load-transfer mechanism of pile caps, the ultimate strength of 78 reinforced concrete pile caps tested to failure was examined by the proposed models along with the sectional and strut-tie model methods of current design codes.

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.

Combined Design Method for Shear and Torsional Moment (전단과 비틀림모멘트 설계의 조합)

  • Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • Both shear and torsional moments apply shear stresses on cross-section of a member, which need to be considered in the design. But in the current Korean Building Code, the design equations for shear and torsional moments are expressed in terms of the sectional strength with different units, causing figures to be drawn separately in two axes. If the design equations are expressed in terms of stresses, then the stresses of shear and torsional moments can be added, allowing figures to be drawn in one axis for easy recognition of the design procedure and the final design results. Moreover, the current code's design equations for shear and torsional moments are considered separately with the intention of summing the area of stirrups with respect to unit length for shear moment ($A_{\upsilon}/s$) and torsional moment ($2A_t/s$). Since the size or type of vertical stirrups are predetermined in the design process, the design equations are expressed in terms of the spacing of stirrups rather than the $A_{\upsilon}/s$ and $2A_t/s$ terms, clarifying various design steps and a design process.

Realistic Estimate Method of Reinforced Concrete Column's Ultimate Strength Using the Nonlinear Finite Element Analysis Program (비선형 유한요소해석 프로그램을 이용한 철근콘크리트 기둥부재의 합리적인 극한강도 평가 방안)

  • Cheon, Ju-Hyoun;Kim, Ki-Ho;Seong, Dae-Jeong;Park, Jae-Guen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.133-140
    • /
    • 2008
  • The design method of the reinforced concrete structures is converting from the current limit state design method to the reliability based design method and active studies have been done in the US, Europe, and Japan etc. Performance based design method is considering lots of uncertainty of current design provision rationally and make sure that structure have a reliable reliability and safety. The main area of these studies is to secure the non-linear analysis technology with high reliability. The data for reinforced concrete columns tested by many researchers are used to verify the applicability of the nonlinear finite element analysis program (RCAHEST, Reinforced Concrete Analysis in Higher Evaluation System Technology). A comparison is made between analysis and test, calculated safety factor based on reliability theories to applies to analysis result.

Evaluation of Testing Method for Quality Control of Chloride Diffusivity in Concrete under chloride attack environment (콘크리트 구조물의 염해 내구성능 검토를 위한 현장 품질관리 시험법 검토)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song;Kim, Cheol-Ho;Geon, Byung-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.973-976
    • /
    • 2008
  • Recently, it is increasingly reported that the deterioration of concrete structure under marine environments is due to diffusion and penetration of chloride ions. It is very important to estimate the diffusion coefficient of chloride ion in concrete. Estimation methods of chloride diffusivity by concentration difference is time-consuming. Therefore, chloride diffusivity of concrete is mainly conducted by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. However, there has not been any proper method for field quality control to closely determine the diffusion coefficient of chloride ion through accelerated tests using potential difference. In this paper, the various test methods for determination of chloride diffusion coefficient in concrete were investigated through comparison accelerated tests. From the results of estimated diffusion coefficient of chloride ion, relationship between the ponding test and acceleration test was examined.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Frames Reinforced with Chevron Bracing System (역V형 가새로 보강된 RC 골조의 내진성능평가)

  • Ha, Heonjun;Oh, Keunyeong;Lee, Kangmin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • In this study, seismic performance of existing RC frames reinforced with steel chevron bracing systems was experimentally evaluated. For this purpose, the unreinforced base specimen and seismically reinforced specimens with steel chevron bracing systems were fabricated and tested. Both strength and stiffness of the reinforced specimens were targeted about 2-3 times larger than the base specimen. Test results showed that the stiffness, strength, and ductility of the reinforced specimens considerably improved than those of unreinforced base specimen. Therefore, the results from this study could offer the basic information on the developing design guideline for the seismic reinforcement of RC frames.

An Evaluation of Shear Strength of Plain HVFAC Concrete by Double Shear Test Method (2면전단시험법에 의한 무근 HVFAC 콘크리트의 전단강도 평가)

  • Lee, Hyung-Jib;Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.261-266
    • /
    • 2017
  • In this study, to determine the shear properties, experiments on the shear behavior of plain concrete with the high volume fly ash cement by double shear test were performed. Test parameters are fly ash content and concrete compressive strength. Experimental results show the tendency that the shear strength similarly increases with an increase in the compressive strength as is generally known. The concrete shear strength formula proposed in the concrete structural design code of KCI shows a similar tendency to the experimental results, and It is expected that the shear strength of the high volume fly ash cement concrete can be applied with the formula given in the concrete structural design code of KCI. When considering the fly ash content ratio, the shear strength of high volume fly ash cement concrete according to fly ash conctent ratio shows as having a far greater correlation than if it is not considered to fly ash content ratio. So, even though existing code can be appliable for non consideration of the fly ash content ratio, we proposed a formula that is much more relevant than that of concrete structural design code of KCI.

The Development of a 100 Mpa Class Ultra-high Strength Centrifugal Molded Square Beam Design and Manufacturing Technology (100MPa급 초고강도 원심성형 각형보의 설계 및 제작기술 개발 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.11-22
    • /
    • 2023
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete, a special formwork for producing a centrifugal square beam was manufactured, and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. The produced centrifugally formed rectangular beams were subjected to performance tests according to the standard bending and shear test standards for centrifugally formed members. The static load test results for the four specimens exceeded both the nominal bending strength and nominal shear strength, which are design values through structural design, proving the structural reliability of the ultra-high-strength centrifugally formed square beam.