• Title/Summary/Keyword: 콘크리트구조설계기준

Search Result 560, Processing Time 0.026 seconds

Discrete Optimum Design of Reinforced Concrete Beams using Genetic Algorithm (유전알고리즘을 이용한 철근콘크리트보의 이산최적설계)

  • Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.259-269
    • /
    • 2005
  • This paper describes the application of genetic algorithm for the discrete optimum design of reinforced concrete continuous beams. The objective is to minimize the total cost of reinforced concrete beams including the costs of concrete, form work, main reinforcement and stirrup. The flexural and shear strength, deflection, crack, spacing of reinforcement, concrete cover, upper-lower bounds on main reinforcement, beam width-depth ratio and anchorage for main reinforcement are considered as the constraints. The width and effective depth of beam and steel area are taken as design variables, and those are selected among the discrete design space which is composed with dimensions and steel area being used from in practice. Optimum result obtained from GA is compared with other literature to verify the validity of GA. To show the applicability and efficiency of GA, it is applied to three and five span reinforced concrete beams satisfying with the Korean standard specifications.

Sustainable Design Method of Reinforced Concrete Beam Using Embodied Energy Optimization Technique (내재에너지 최적화를 통한 철근 콘크리트 보의 지속가능 설계법)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Yeo, DongHun;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1053-1063
    • /
    • 2014
  • This study presents a sustainable design method that optimizes the embodied energy of concrete beam based on the concept of sustainable development that effectively utilizes natural resource and energy within the range that our succeeding generation can afford to utilize. In order to get the flexural strength carrying the ultimate load, concrete beam sections are designed by optimization that consists of the embodied energy as a objective function and the requirements of design code as constrained conditions. The sustainable design can be used to minimize the embodied energy consumed in material production, construction, operation, demolition of the infrastructure. As a result of comparison of the cost and the embodied energy optimizations based on practical beam sections, it is shown that 20% embodied energy saving and 35% $CO_2$ emission saving are achieved by sacrificing 10% cost increase. The sustainable design method provides a new effective methodology that manages the strength design concept based on cost minimization together with economic feasibility and sustainability. In addition, the method is expected to be applied to more various structural design practices.

A Computational Platform for Nonlinear Analysis of Prestressed Concrete Deep Beams (프리스트레스트 콘크리트 깊은 보의 비선형해석을 위한 전산플랫폼)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.734-737
    • /
    • 2010
  • 이 연구에서는 프리스트레스트 콘크리트 깊은 보의 비선형해석을 위한 전산플랫폼을 개발하였다. 프리스트레스트 콘크리트 깊은 보의 전단거동을 정확하게 파악하고 합리적이면서 경제적인 설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 사용된 부착 또는 비부착 텐던요소는 유한요소법에 근거하며 프리스트레스트 콘크리트 부재의 콘크리트와 텐던의 상호작용을 구현할 수 있다. 이 연구에서는 프리스트레스트 콘크리트 깊은 보의 전단거동을 파악하기 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험 결과와 비교하여 그 타당성을 검증하였다.

  • PDF

Reliability Analysis of Concrete Road Bridge Designed with Different Resistance Factor Format (콘크리트 도로교 설계를 위한 저항계수 체계별 신뢰도 분석)

  • Paik, In-Yeol;Sang, Hee-Jung
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.147-157
    • /
    • 2011
  • As a background study to apply the reliability-based resistance factors to the domestic concrete bridge design code, a comparative study is conducted for the design results and the reliability indexes obtained by adopting different resistance factor formats to yield the design strength of concrete structures. The design results which are calculated by applying the section resistance factors of the current domestic design code and the material resistance factors of Eurocode are compared for the concrete beam bridge. The reliability index is calculated by considering the uncertainties involved in material, dimension and strength equation during the design procedure to get the strength of concrete structure. Also, the sensitivity analysis is performed to figure out which design variables have great impact on the reliability index. The resistance factors of the current domestic bridge design code, AASHTO LRFD and Eurocode are applied to the bridge design for flexure and shear strength and the results show that the resistance factors of the domestic code give the largest reliability indexes. It is observed that the probabilistic distribution of the live load makes difference for the reliability index and the yield strength of reinforcing steel and the live load have great impact on the reliability of both flexural and shear strength of concrete beam through the sensitivity analysis.

Regularization Length in Single Plane Cable-stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 응력 불균일 영역길이)

  • Kang, Ho-Jun;Jang, Jae-Youp;Kim, Gwang-Soo;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.10-13
    • /
    • 2010
  • 세그먼트 자중 등에 의한 휨모멘트와 케이블 수직압축력에 의한 합성응력이 발생되고 바닥판 경간비가 변하는 사장교의 시공단계에서는 전단지연의 영향범위가 다를 수 있다. 이 연구에서는 1면 케이블 콘크리트 박스 사장교를 대상으로 시공단계시 보강형에 고려되어야 할 합성응력에 의한 유효플랜지폭을 분석하였다. 그 결과 바닥판 경간비가 0.38 이하의 범위에서 보강형의 전폭을 유효플랜지폭으로 적용할 수 있는 것으로 해석되었다. 따라서 시공단계시 변화되는 바닥판 경간비의 크기에 관계없이 전폭을 유효플랜지폭으로 반영하는 실무관행은 안전측 설계가 되지 못할 수 가 있다. 바닥판 경간비가 작아짐에 따라서는 전폭과 캔틸레버 구조계로 유효플랜지폭을 결정하는 것이 타당하다. 이 연구에서는 수직력에 대한 도로교설계기준의 유효플랜지폭 규정에 대한 평가도 수행하였다.

  • PDF

Experimental Study on Lap Splice of Headed Deformed Reinforcing Bars in Tension (인장력을 받는 확대머리 이형철근의 겹침이음에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.59-67
    • /
    • 2014
  • In tension lap splices of straight deformed bars, KCI Code (KCI2012) and ACI Code (ACI318-11) requires that the lap lengths for class B splice are 1.3 times as development length. KCI2012 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. The purpose of this experimental study is to evaluate that KCI2012 equation for the development length, $l_{dt}$, of headed bars can be used to calculate the lap length, $l_s$, of headed deformed bars in grade SD400 and SD500, having specified yield strength of 400 and 500 MPa. Test results showed that specimens with $l_s$ equal to $1.3l_{dt}$ had maximum flexural strengths as 1.16~1.31 times as the nominal flexural strengths, flexural failure mode, and ductility. These observations indicate that $1.3l_{dt}$ is suitable to the tensile lap length of headed deformed bars in grade SD400 and SD500.

Pullout Tests on M12&M20 Stainless Steel Post-Installed Expansion Anchor for Seismic Design in Cracked Concrete (균열 콘크리트에 설치된 M12, M20 내진용 스테인리스스틸 확장식 후설치 앵커 인장 실험)

  • Kim, Jin-Gyu;Chun, Sung-Chul;An, Yeong-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, seismic design for anchors is required, which are used for connecting structural members and non-structural and structural members. In this study, pull-out tests on the new expansion anchors which have been developed for cracked concrete. The anchors of 12 mm and 20 mm diameters were tested which are commonly used. Experiments were conducted on non-cracked concrete and cracked concrete to evaluate the seismic performance of the post-installed anchor. The experimental method complies with the specified test protocol (KCI, 2018). Three experimental variables are included in this study: presence of cracks, concrete compressive strength, and effective embedment depth. The strength of the anchors was evaluated with the characteristic capacity K5% determined from the test results incorporated with the safety of 5% fractile. The characteristic capacity K5% of the non-cracked and cracked concrete specified in KDS 14 20 54 are 9.8 and 7.0, respectively. Test results show that all groups except the three groups have higher characteristic capacity K5% than the KDS code and the nominal strengths of the tested anchors can be determined with the obtained characteristic capacity K5%.

Evaluation on Sulfate Attack for Concrete Structures of Nuclear Power Plants (원자력발전소 콘크리트 구조물의 황산염 침식 평가)

  • Lee, Jong-Suk;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2004
  • The Mechanistic model, considering expansion stress, coefficient of diffusion etc. to time, is applied to predict the deterioration of concrete structures of the nuclear power plant(NPP) due to sulfate attack. Mix design for the test was three kinds of specified compressive strength 385, 280 and $210kgf/cm^2$ which are used to construct NPPs and cement was type I and V. The immersion test was performed with 10% $Na_2SO_4$ solution to cement type and strength for a year. The coefficient of diffusion on each concrete mix is calculated based on the results of immersion test, and it is used for predicting the sulfate attack of the concrete structures of NPP. The coefficient of diffusion of the target concrete ranged $0.5763{\sim}3.9002{\times}10^{-12}m^2/sec.$, and the sulfate attack rate of concrete structures of the NPP was predicted as 0.1~7.1 mm/year.

Evaluation of the Maximum Yield Strength of Steel Stirrups and Shear Behavior of RC Beams (철근콘크리트 보의 전단보강철근의 최대 항복강도 및 전단거동 평가)

  • Lee, Jung-Yoon;Choi, Im-Jun;Kang, Ji-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.711-718
    • /
    • 2010
  • The requirement of the maximum yield strength of shear reinforcement in the KCI-07 code is quite different to those in the ACI-08 code, EC2-02, CSA-04, and JSCE-04 codes. Eighteen RC beams having high strength shear reinforcement were tested. Test results indicated that even if the yield strength of shear reinforcement in beams was much greater than the maximum yield strength required by the KCI-07 design code, the shear reinforcement of these beams reached their yield strains. Furthermore, the shear strengths of tested beams increased almost linearly with the increase of the amount of shear reinforcement. In addition, larger numbers of diagonal cracks developed in the web of the beam having greater yield strength than the beams having lower yield strength of shear reinforcement. The maximum crack width of the beam having high strength shear reinforcement was approximately the same to the crack with of the beam having normal strength shear reinforcement.

An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete (비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구)

  • Seo, Seong-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • The use of post installed anchors with adhesive type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with adhesive type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on adhesive strength of anchors embedded into plain concrete by shear experiments of anchors with variables such as edge distance, anchor interval, and load direction and supplying basic data for enactment of domestic design code.