• Title/Summary/Keyword: 코크스

Search Result 99, Processing Time 0.026 seconds

The relation of structural transition and electrical property by deintercalation of Li-Carbon intercalation compounds (I) : For the formation of Li-GFDICs and Li-PCDICs (리튬-탄소층간화합물의 Deintercalation에 따른 구조변이와 전기적 성질과의 관계(I) : Li-GFDICs와 Li-PCDICs의 생성에 대하여)

  • Oh, Won-Chun;Baek, Dae-Jin;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.131-138
    • /
    • 1995
  • We have discussed on the structural transition and its effect on the electrical property of Li-GFDICs and Li-PCDICs occuring during the deintercalation process of Li-Graphite Fiber Intercalation Compounds(Li-GFICs) and Li-Petroleum Cokes Intercalation Compounds(Li-PCDICs) synthesized under pressure and temperature by spontaneous oxidation by air circulation. The analytical results were obtained by X-ray diffraction and electrical specific resistivity measurements. According to X-ray analysis, we have found that the major stage of Li-GFICs was stage 2 and those of Li-PCICs were stage 1 and stage 2, respectively. And from this results of the deintercalation process, we have found that the deintercalation process did not occur any more after 5th week of Li-GFDICs and after 3rd week of Li-PCDICs. According to the results of the electrical specific resistivity measurements, Li-GFDICs showed little variation to 3rd week and rising in the steady curve after 4th week, while Li-PCDICs showed a rising in the steady curve to 3rd week and a declining curve after 3rd week. Therefore from these results, we can consider that graphite fiber and petroleum cokes as a substrate can be also used as an anode material of battery because they have good intercalation-deintercalation reactivity with lithium.

  • PDF

Anodic Properties of Needle Cokes-derived Graphitic Materials in Lithium Secondary Batteries (침상 코크스(needle cokes)로부터 제조된 흑연질 탄소재료의 리튬 2차전지 음극특성)

  • Park Chul Wan;Oh Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.221-226
    • /
    • 1999
  • Two needle cokes (NC-A and NC-B) that differ in both the texture and impurity content to each other were graphitized at $2000-3000{\circ}C$, and the average particle size, size distribution and surface area were compared after milling. Their anodic properties in Li secondary batteries were also analyzed. Two materials showed a higher degree of graphitization with an increase in the preparation temperature, however, the NC-B series was less graphitized than NC-A due to the presence of impurities and less ordered mosaic texture. The mein particle size of the milled powder was proportional to the degree of graphitization, but the surface area showed the opposite trend. The highly graphitized materials yielded powders of lower uniformity in the size distribution. The discharge capacity of the resulting carbons steadily decreased in the temperature range of 1000 to $2000^{\circ}C$ due to the depletion of carbonaceous interlayers that contain crystal defects. A later increase in the discharge capacity was observed at $>2000^{\circ}C$, which arises from the formation of graphitic interlayers. The milling process gave rise to a sloping discharge curve at >1.0 V, but this was converted to a plateau at <0.25V after a repeated cycling or additional heat-treatment at $1000^{\circ}C$. The discharge at >1.0V likely comes from the disordered surface structure formed during the milling process. The evolution of a plateau at <0.25 V suggests that this disordered structure transforms to a more ordered graphitic one upon a cell cycling or heat-treatment.

Thermal Characteristics of Waste Organic Sludges Discharged from an Chemical Product Manufacturing Industry (화학제품제조업에서 배출되는 폐 유기성슬러지의 열적 특성)

  • Kim, Min-Choul;Lee, Gang-Woo;Lee, Man-Sig;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1745-1753
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludge discharged from chemical and petrochemical product manufacturing industries in the industrial complex. The average combustible and ash content of organic sludges from chemical and petrochemical product manufacturing industries were 17.42%, 7.45%, and 18.25%, 4.22%, respectively. The C, H, O, N, and S compositions for chemical and petrochemical product manufacturing industries were 33.06, 4.34, 24.81, 5.18, and 0.72%. And those compositions for petrochemical product manufacturing industries were 36.58, 4.74, 26.79, 5.09, and 0.49%, respectively. From the TGA test, the minimum temperature for combustion of the sludge discharged from B company was $700^{\circ}C$ for direct use for energy and 2 sludges(F and N companies) were about $600^{\circ}C$. According to the basic combustion test, high concentration of CO was formed because oxidation and pyrolysis reaction take place in the batch type reactor at the same time. From this phenomena we could obtain the significant data for the overheating and breakage of furnace.

Effect of Coal Tar Pitch Viscosity on Impregnation for Manufacture of Carbon Blocks with High Density (고밀도화 탄소 블록 제조 시 콜타르계 피치의 점도가 함침에 미치는 영향)

  • Cho, Jong Hoon;Hwang, Hye In;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.569-573
    • /
    • 2021
  • In this study, high-density carbon blocks were manufactured using coke, binder pitch, and impregnated pitch, then the effect of pitch fluidity on the densification of carbon blocks during the impregnation process was investigated. A green block was manufactured through high-pressure figuration of coke and binder pitch, and a carbon block was obtained through a heat treatment process. An impregnation process was performed to remove pores generated by volatilization of the binder pitch during the heat treatment process. The impregnation process was carried out the high-pressure reaction step of impregnating the pitch into the carbon block followed by the pretreatment step of melting the impregnation pitch. Melting of the impregnation pitch was carried out at 140~200 ℃, and the viscosity of the impregnation pitch decreased as the heat treatment temperature increased. The decrease in the viscosity of the impregnation pitch improved the fluidity and effectively impregnated the pores inside the carbon block, reducing the porosity of the carbon block by 83% and increasing the apparent density by 5%.

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries (저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향)

  • Whang, Tae Kyung;Kim, Ji Hong;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.

Development of Coke Breeze Combustion Technology in the Calcining Rotary Kiln (Rotary Kiln 식석회소성로에서의 분코크스 연소 기술)

  • Kim, J.G.;Cho, H.C.;Kim, Y.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.41-45
    • /
    • 2004
  • A dust injection system was developed for the lime calcining rotary kiln for the coke dust from the coke dry quenching(CDQ) facility to be used as a fuel. The CDQ dust was injected with the gaseous fuel through the hole in the burner. In order to prevent the spot heating large particles should be removed from dust and dust should be injected as fast as possible so that particle combustion lasts as long as possible without precipitation. This is especially necessary when dust is burned together with gaseous fuel because the gaseous fuel can not go so far and in addition dust combustion aggravates hot spot heating. In this research a rotation drum screen was used to remove particles with diameter larger than 4mm and dust injection speed was 40m/sec. And the burner was adjusted not to use swirl that hinders flame go far away. With these measures scale generation iside the kiln could be reduced to be negligible and in addition NOx emission could be reduced from 150ppm to 20ppm. The fuel reduction was about 85Mcal/T-lime.

  • PDF

Study metal-grade silicon manufacturing and slag refining for the production of silicon solar cell (태양전지용 실리콘 생산을 위한 금속급 실리콘 제조와 슬래그 정련 연구)

  • Lee, Sangwook;Kim, Daesuk;Park, Dongho;Moon, Byung Moon;Min, Dong Jun;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.111.2-111.2
    • /
    • 2011
  • 야금학적 방법을 통한 태양전지용 실리콘 제조를 위하여 아크로(Arc furnace)에서 제조된 용융 상태의 금속급 실리콘을 슬래그와 직접 반응시켜 불순물을 제거하는 공정에 관한 연구를 수행하였다. 이를 위해 아크로와 고주파 유도용해로(High-frequency induction furnace)를 이용하여 금속급 실리콘을 제조와 정련 특성 실험을 수행하였다. 본 연구에서 금속급 실리콘을 제조하기 위한 장비로 150kW급-DC 아크로와 300kW급-AC 아크로를 사용하였다. 원재료로 규석, 코크스(Cokes), 숯, 그리고 우드칩(Wood chip)을 실험 비율에 맞춰 아크로 내부에 장입하고, 이를 용융환원 방법을 통해 반응을 시켰다. 이때 생산된 금속급 실리콘의 순도는 약 99.2~99.8% 이었으며, 원재료의 순도, 장입 비율 및 아크로 운전 특성에 따라 편차가 있다. 아크로에서 생산된 금속급 실리콘의 경우 인(phosphorus), 붕소(boron)를 다량 함유하고 있고, 이를 제거하기 위하여 50kW급 고주파 유도용해로 장비를 사용하여 슬래그 정련 실험을 수행하였다. 슬래그 정련시 사용한 성분은 SiO2, CaO 그리고 CaF2 이며, 금속급 실리콘과 슬래그의 질량비 및 반응 시간에 따른 실리콘 불순물 특성을 평가하였다. 실험결과 인과 붕소는 각각 1 ppm 이하, 5 ppm 이하 였으며, 칼슘을 제외한 대부분의 금속 불순물의 경우 0.1~0.2% 임을 확인하였다.

  • PDF

An Experimental Study of Petroleum Cokes Air Staged Burner (공기다단 적용 석유코크스 연료 전용 연소기에 대한 실험적 연구)

  • Kwon, Minjun;Lee, Changyeop;Kim, Sewon
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • This study is aimed to study combustion characteristics of low $NO_X$ burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and relatively low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. The petroleum cokes burner is operated at fuel rich condition, and overfire air are supplied to achieve fuel lean condition. The low $NO_X$ burner is designed to control fuel and air mixing to achieve air staged combustion, in addition secondary and tertiary air are supplied through swirler. Air distribution ratio of triple staged air are optimized experimentally. The result showed that $NO_X$ concentration is lowest when overfire air is used, and the burner function at a fuel rich condition.

Chemical characteristics of organic sludges generated from chemical product manufacturing industry (화학제품제조업에서 배출되는 유기성슬러지의 화학적 특성)

  • Shon, Byung-Hyun;Jung, Moon-Hun;Lee, Joo-Ho;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Man-Sig;Lee, Gang-Woo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.407-410
    • /
    • 2008
  • 원소분석 결과 평균값은 "화합물 및 화학제품 제조업"의 경우 C 33.06wt%, H 4.34wt%, O 24.81wt%, N 5.18wt%, S 0.72wt%로 나타났으며, "코크스, 석유 정제품 및 핵연료 제조업"의 경우 C 36.58wt%, H 4.74wt%, O 26.79wt%, N 5.09wt%, S 0.49wt%로 나타났다. 열중량분석 결과, B사에서 배출되는 슬러지는 $700^{\circ}C$ 이상에서 그리고 F와 N 사에서 배출되는 슬러지는 $600^{\circ}C$ 정도의 온도에서도 연소가 가능할 것으로 판단된다. 연소테스트 결과, 산화반응과 동시에 열분해 반응이 일어나 고농도의 일산화탄소가 배출된다.

  • PDF

Production of solar grade silicon by using metallurgical refinement (야금학적 정련 통합 공정을 이용한 태양전지용 실리콘 제조 기술)

  • Jang, Eunsu;Park, Dongho;Moon, Byung Moon;Min, Dong Jun;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.54.2-54.2
    • /
    • 2011
  • 야금학적 정련 공정 중 슬래그 처리, 일방향 응고, 플라즈마-전자기유도용해 공정을 적용한 태양전지용 실리콘 제조 기술에 관한 연구를 수행하였다. 원소재인 금속급 실리콘을 제조하기 위해원재료로 규석, 코크스(Cokes), 숯, 그리고 우드칩(Wood chip)을 사용하였으며, 150kW급 DC 아크로(Arc furnace)를 이용하여 순도 99.8% 금속급 실리콘을 제조하였다. 제조된 용융 상태의 금속급 실리콘은 슬래그와 반응시켜 불순물을 제거하였다. SiO2-CaO-CaF2 계의 슬래그를 이용하였으며, 금속급 실리콘과 슬래그의 질량비 및 반응 시간에 따른 실리콘 불순물 특성을 평가하였다. 이후 고액 계면이 제어 가능한 일방향 응고 장치를 이용하여 금속불순물을 제거하였다. 고액상태의 온도 조건 및 응고 시간에 따른 불순물 농도 변화를 평가하였으며, 순도 6N급의 실리콘을 제조하였다. 마지막 공정으로 스팀 플라즈마 토치와 냉도가니가 적용된 전자기 유도 용해장치를 이용하여 붕소와 인을 제거하였다. 플라즈마 토치 가스로는 아르곤, 스팀, 수소를 이용하였다. 붕소와 인의 제거율은 각각 94%와 96%를 달성하였으며, 최종 순도 6N급의 실리콘을 제조하였다.

  • PDF