• Title/Summary/Keyword: 코발트 회수

Search Result 72, Processing Time 0.025 seconds

Development of Ammoniacal Leaching Processes; A Review (암모니아 침출공정(浸出工程) 기술개발(技術開發) 동향(動向))

  • Yoo, Kyoungkeun;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.3-17
    • /
    • 2012
  • Selective leaching processes for copper, gold, nickel, and cobalt have been investigated because there is an advantage of ammoniacal hydrometallurgy that metal such as copper could be selectively extracted restricting the dissolution of iron or calcium. In the present article, the studies for selective ammoniacal leaching of copper from motor scraps and waste printed circuit boards (PCBs), for ammoniacal leaching of gold to decrease the amount of cyanide used or to substitute cyanide by thiosulfate, and for ammoniacal leaching to recover nickel and cobalt from nickel oxide ore and intermidiate obtained from manganese nodule treatment process were summarized and further studies were proposed for domestic technology development for ammoniacal hydrometallurgy processes.

Sulfuric Acid Leaching of Valuable Metals from Spent Petrochemical Catalyst using Hydrogen Peroxide as a Reducing Agent (石油化學 廢觸媒로부터 過酸化水素를 還元劑로이용한 有價金屬의 황산침출)

  • 박경호;손정수;김종석
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.20-26
    • /
    • 2001
  • Sulfuric acid leaching of Mn, Co and Fe from spent petrochemical catalyst was performed using hydrogen peroxide as a reducing agent. Low extraction of Mn, Co and Fe was obtained by only sulfuric acid. When hydrogen peroxide were added as a reducing agent, the high extraction of these metals could be obtained. Different from ordinary leaching, the extraction per-centages of metal components decreased with elevating leaching temperature in this process. Under the optimum condition, the extraction percentages of Mn, Co and Fe were 93.0% , 87.0% and 100% respectively.

  • PDF

Treatment of Metal Wastes with Manganese Nodules (망간단괴 제연 시 금속계 폐자원의 처리)

  • Park Kyung-Ho;Nam Chul-Woo;Kim Hong-In;Park Jin-Tae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.17-21
    • /
    • 2005
  • Deep-sea Manganese nodules was treated with reduction-smelting process with adding the spent Ni-Cd battery or the cobalt contained spent catalyst for recovery of nickel and cobalt metals. The nickel in the spent Ni-Cd battery could be recovered by adding $5\%$ coke as a reducing agent regardless of the amount of battery added. However, to recover cobalt from the spent catalyst, it is require to add more coke for reduction of cobalt oxide in the catalyst. The treatment of metal wastes with manganese nodules can contribute to lower the cost for the processing of nodules and to facilitate the recycling of metal wastes.

Recovery of Tungsten from WC-Co Hardmetal Sludge by Aqua regia Treatment (WC-Co 초경합금(超硬合金) 슬러지로부터 왕수처리(王水處理)를 이용한 텅스텐의 회수(回收))

  • Kim, Ji-Hye;Kim, Eun-Young;Kim, Won-Back;Kim, Byung-Su;Lee, Jae-Chun;Shin, Jae-Soo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2010
  • A fundamental study was carried out to develop a process for recycling tungsten and cobalt from WC-Co hardmetal sludge generated in the manufacturing process of hardmetal tools. The complete extraction of cobalt and simultaneous formation of tungstic was achieved by treating the sludge using aqua regia. The effect of aqua regia concentration, reaction temperature and time, pulp density on cobalt leaching and tungstic acid formation was investigated. The complete leaching of cobalt was attained at the optimum conditions: 100 vol.% aqua regia concentration, $100^{\circ}C$ temperature, 60 min. reaction time and 400 g/L pulp density. A complete conversion of tungsten carbide of the sludge to tungstic acid was however, obtained at the pulp densities lower than 150 g/L under the above condition. The progress of reaction during the aqua regia treatment of the sludge was monitored through the XRD phase identification of the residue. The metallic impurities in the tungstic acid so produced could be further removed as insoluble residues by dissolving the tungsten values in ammonia solution. The ammonium paratungstate($(NH_4)_{10}{\cdot}H_2W_{12}O_{42}{\cdot}4H_2O$) of 99.85% purity was prepared from the ammonium polytungstate solution by the evaporation crystallization method.

Feasibility Analysis on Slag Reprocessing Project in Lubumbashi, Democratic Republic of the Congo (DR콩고 루붐바시 슬래그재처리사업(再處理事業)의 경제성(經濟性) 평가(評價))

  • Kim, Yu-Jeong;Kim, Dae-Hyoung
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.49-59
    • /
    • 2012
  • One of the world's top resource-rich countries, the Democratic Republic of the Congo has ample reserves of cobalt, iron ore, copper and diamond in particular. Importing most of major mineral resources, the Republic of Korea has examined-together with the Congo government since 2008-the possibility of a project where it supports port construction in the Democratic Republic of the Congo and acquires useful minerals such as zinc, cobalt and copper in exchange through slag reprocessing in the local city of Lubumbashi. This study conducted feasibility analysis on the slag reprocessing project in Lubumbashi, Congo and found that the project's payback period stands at 6.7 years, net present value(NPV) at 34 million dollars and internal rate of return(IRR) at 17.4%. According to sensitivity analysis that takes into account uncertainties concerning taxation, fixed cost, operational cost and resource prices, the NPV of the project ranges from -24.8 million dollars to 92.7 million dollars.

Recovery of $LiCoO_2$ from Spent Lithium Ion batteries by using flotation (부유선별 기술을 이용한 폐리튬이온전지로부터 유가 금속의 회수)

  • Kim, Young-Hun;Kong, Bong-Sung;Lee, Sang-Hoon
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.173-177
    • /
    • 2005
  • 리튬이온 2차전지(Lithium ion battery, LIB)는 기존에 사용되던 전지에 비해 에너지 밀도가 높고 충방전 사이클이 우수하다. 이 때문에 휴대전화와 노트북 등에 수요가 급속하게 증가하고 있으며 1995년 LIB의 생산량은 4천만 개에서 2004년에는 약 8억 개로 20배 이상 증가하였다. 이에 따라 폐LIB도 급속하게 증가하게 되어 전국적인 재활용 시스템의 확보가 필요한 실정이다. 본 연구에서는 폐LIB에 함유되어 있는 유가금속 중에서 리튬코발트옥사이드(이하 $LiCoO_2$)를 회수하기 위하여 분쇄기(orient vertical cutting mill)와 진동 Screen을 사용하여 유기분리막, 금속류(Aluminium foil, Copper foil, case 등) 그리고 전극물질(lithium cobalt oxide와 graphite 등의 혼합 분말)로 분리하였다. 전극물질에서 $LiCoO_2$와 graphite 분리를 위한 전처리 단계로서 $500^{\circ}C$ 정도의 열처리를 하여 $LiCoO_2$의 표면 성질을 변화시켜 부유선별에 의해 $LiCoO_2$와 graphite의 분리가 가능하도록 하였다. 부유선별 실험 결과 93% 이상의 순도를 가지는 $LiCoO_2$를 92% 이상 회수할 수 있었다.

  • PDF

양이온교환 수지층에서 V(III)-Fe(II)-Picolinate 착화물 함유 제염폐액의 재생연구(III);재생거동에 대한 공정변수의 영향

  • 심준보;박상윤;문제권;오원진;김종득
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.921-927
    • /
    • 1995
  • 수지충전식 전해재생조내에서 바나듐-철-Picolinate 착화물이 함유된 모의 LOMI 제염폐액의 재생거동에 대한 공정변수의 영향을 조사하였다. 전기투석에 의해 양이온종이 제염 폐액으로부터 제거되는 재생 분리효율에 대한 전류밀도, 제염폐액 공급유량 및 재생조내 수지층두께 등 공정변수의 영향은 바나듐이온이 가장 크게 받는다. 공정변수의 영향을 총괄 파라미터인 공정변수비 $\alpha$로 정의하여 나타낼 때 재생 분리효율 95%이상을 얻기 위해서는 $\alpha$가 0.2 이하로 유지되어야 한다. LOMI 제염폐액의 재생시 전기투석 flux는 공정변수비, $\alpha$값이 증가함에 따라 철이온이 바나듐이온에 비해 더욱 커지는 경향을 보였다. 재생종료 후 발생되는 음극폐액내 철 및 코발트 등 방사성이온종은 음극액의 초기 수소이온 농도를 조절하면 침전제의 첨가 얼이 음극반응에 의해 음극액의 pH를 산성에서 알카리성으로 바꿀 수 있어, 수산화물 형태의 침전물 입자로 만들어 쉽게 제거할 수 있다. 재생시 바나듐이온은 대부분 $V^{III}$(Pic)$_2$$^{+}$ 착화물형태로 전기투석된다. 음극액으로 formate용액을 사용하면 철 및 코발트 등 방사성이온종을 제거한 음극액은 농축된 LOMI제염제로 회수하여 필요시 산화가를 조정한 후 재생된 착화제와 혼합하여 제염제로 재사용할 수 있어, 더욱 효과적으로 제염폐액을 재생하는 향상된 재생방법이다.다.

  • PDF

Comparison of the Chemical Reactivity between Sulfuric and Methanesulfonic Acids as a Leaching Agent (침출제로 황산과 메탄술폰산의 화학적 반응성 비교)

  • Tran, Thanh Tuan;Moon, Hyun Seung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.41-46
    • /
    • 2021
  • Methanesulfonic acid (MSA) can be considered effective in the leaching of metals because of its advantageous physical and chemical properties. The chemical reactivities of MSA and sulfuric acid were compared based on their structures and the dissolution data of Co and Ni metal. The inductive and resonance effects play a vital role in the chemical reactivities of these two acids. The dissolution percentages of Co and Ni in the sulfuric acid solution were higher than those in the MSA solution under the same experimental conditions. Considering the strong acidity of MSA and the high solubility of its metal salts, MSA can be employed as a leaching agent for the recovery of metals.

Lithium Ion Battery Recycling Industry in South Korea (국내 리튬이온전지 재활용 산업현황)

  • Kyoungkeun Yoo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The objective of this article is to summarize the commercial lithium ion battery (LIB) recycling processes in Korea and to suggest new direction for LIB recycling. A representative LIB recycler, SungEel Hitech Co. has successfully operated the LIB recycling process for over 10 years, and new recycling processes were recently proposed or developed by many recycling companies and battery manufacturers. In the new recycling processes, lithium is recovered before nickel and cobalt due to the rapid rise in lithium prices, and metal sulfate solution as final product of recycling process can be supplied to manufacturers. The main problem that the new recycling process will face is impurities, which will mainly come from end-of-life electric vehicles or new additives in LIB, although the conventional processes must be improved for mass processing.

Solvent Extraction of Co(II) and Cu(II) from Hydrochloric Acid Solution of Spent Lithium-ion Batteries Containing Li(I), Mn(II), and Ni(II) (Li(I), Mn(II) 및 Ni(II)를 함유한 폐리튬 이온 배터리의 염산침출용액에서 Co(II) 및 Cu(II)의 용매 추출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2020
  • In order to develop a process for the recovery of valuable metals from spent LiBs, solvent extraction experiments were performed to separate Cu(II) and/or Co(II) from synthetic hydrochloric acid solutions containing Li(I), Mn(II), and Ni(II). Commercial amines (Alamine 336 and Aliquat 336) were employed and the extraction behavior of the metals was investigated as a function of the concentration of HCl and extractants. The results indicate that HCl concentration affected remarkably the extraction efficiency of the metals. Only Cu(II) was selectively at 1 M HCl concentration, while both Co(II) and Cu(II) was extracted by the amines when HCl concentration was higher than 5 M, leaving the other metal ions in the raffinate. Therefore, it was possible to selectively extract either Cu(II) or Co(II)/Cu(II) by adjusting the HCl concentration.