DOI QR코드

DOI QR Code

Solvent Extraction of Co(II) and Cu(II) from Hydrochloric Acid Solution of Spent Lithium-ion Batteries Containing Li(I), Mn(II), and Ni(II)

Li(I), Mn(II) 및 Ni(II)를 함유한 폐리튬 이온 배터리의 염산침출용액에서 Co(II) 및 Cu(II)의 용매 추출

  • Le, Minh Nhan (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 르민난 (목포대학교 공과대학 신소재공학과) ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2020.10.05
  • Accepted : 2020.10.20
  • Published : 2020.10.30

Abstract

In order to develop a process for the recovery of valuable metals from spent LiBs, solvent extraction experiments were performed to separate Cu(II) and/or Co(II) from synthetic hydrochloric acid solutions containing Li(I), Mn(II), and Ni(II). Commercial amines (Alamine 336 and Aliquat 336) were employed and the extraction behavior of the metals was investigated as a function of the concentration of HCl and extractants. The results indicate that HCl concentration affected remarkably the extraction efficiency of the metals. Only Cu(II) was selectively at 1 M HCl concentration, while both Co(II) and Cu(II) was extracted by the amines when HCl concentration was higher than 5 M, leaving the other metal ions in the raffinate. Therefore, it was possible to selectively extract either Cu(II) or Co(II)/Cu(II) by adjusting the HCl concentration.

폐리튬이온전지에 함유된 유가금속을 회수하기 위한 공정을 개발하기 위해 리튬(I), 망간(II), 니켈(II)을 함유한 합성 염산용액에서 구리(II)와 코발트(II)의 분리를 위한 용매추출실험을 수행했다. 본 연구에서는 Alamine 336과 Aliquat 336을 추출제로 사용했으며 염산과 추출제의 농도에 따른 금속의 추출거동을 조사했다. 염산농도가 금속의 추출거동에 큰 영향을 미치는 것이 확인되었다. 염산농도가 1 M인 조건에서는 구리(II)만 추출되었으나, 염산농도 5 M 이상의 조건에서는 구리(II)와 코발트(II)가 선택적으로 추출되고 리튬(I), 망간(II), 니켈(II)은 추출여액에 남았다. 염산농도를 조절하면 구리(II)와 코발트(II)를 선택적으로 추출하는 것이 가능하다.

Keywords

References

  1. Kamat, P. V., 2019 : Lithium-ion batteries and beyond:Celebrating the 2019 Nobel prize in chemistry - a virtual issue, ACS Energy Lett., 4(11), pp.2757-2759. https://doi.org/10.1021/acsenergylett.9b02280
  2. Wang, Y., Liu, B., Li, Q., et al., 2015 : Lithium and lithium ion batteries for applications in microelectronic devices: A review, J. Power Sources, 286, pp.330-345. https://doi.org/10.1016/j.jpowsour.2015.03.164
  3. Dutkiewicz, J., Kalita, D., Maziarz, W., et al., 2020 : Effect of KOBO extrusion and following cyclic forging on grain refinement of Mg-9Li-2Al-0.5Sc alloy, Met. Mater. Int., 26, pp.1004-1014. https://doi.org/10.1007/s12540-019-00350-y
  4. Nouri, S., Sahmani, S., Hadavi, M., et al., 2020 : Mechanical properties improvement of al-li 8090 alloy by using the new proposed method of directional quenching, Met. Mater. Int., 26, pp.1134-1143. https://doi.org/10.1007/s12540-019-00367-3
  5. Zheng, X., Gao, W., Zhang, X., et al., 2017 : Spent lithiumion battery recycling - reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Manag., 60, pp.680-688. https://doi.org/10.1016/j.wasman.2016.12.007
  6. Wu, C., Li, B., Yuan, C., et al., 2019 : Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching, Waste Manag., 93, pp.153-161. https://doi.org/10.1016/j.wasman.2019.04.039
  7. Badawy, S. M., Nayl, A. A., El Khashab, R. A., et al., 2014 : Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin, J. Mater. Cycles Waste Manag., 16(4), pp.739-746. https://doi.org/10.1007/s10163-013-0213-y
  8. Wang, H., Huang, K., Zhang, Y., et al., 2017 : Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustain. Chem. Eng., 5(12), pp. 11489-11495. https://doi.org/10.1021/acssuschemeng.7b02700
  9. Chiu, K. L. and Chen, W. S., 2017 : Recovery and separation of valuable metals from cathode materials of spent lithiumion batteries (Libs) by ion exchange, Sci. Adv. Mater., 9(12), pp.2155-2160. https://doi.org/10.1166/sam.2017.3214
  10. Vasilyev, F., Virolainen, S., and Sainio, T., 2019 : Numerical simulation of counter-current liquid-liquid extraction for recovering Co, Ni and Li from lithium-ion battery leachates of varying composition, Sep. Purif. Technol., 210, pp.530-540. https://doi.org/10.1016/j.seppur.2018.08.036
  11. Xin, Y., Guo, X., Chen, S., et al., 2016 : Bioleaching of valuable metals li, co, ni and mn from spent electric vehicle li-ion batteries for the purpose of recovery, J. Clean. Prod., 116, pp.249-258. https://doi.org/10.1016/j.jclepro.2016.01.001
  12. Lee, J., So, H., Cho, Y., et al., 2019 : A study on the separation and concentration of li from li-containing waste solutions by electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662. https://doi.org/10.3365/KJMM.2019.57.10.656
  13. Nayl, A. A., Hamed, M. M., and Rizk, S. E., 2015 : Selective extraction and separation of metal values from leach liquor of mixed spent li-ion batteries, J. Taiwan Inst. Chem. Eng., 55, pp.119-125. https://doi.org/10.1016/j.jtice.2015.04.006
  14. Chen, X., Chen, Y., Zhou, T., et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag., 38(1), pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
  15. Chagnes, A. and Pospiech, B., 2013 : A brief review on hydrometallurgical technologies for recycling spent lithiumion batteries, J. Chem. Technol. Biotechnol., 88(7), pp.1191-1199. https://doi.org/10.1002/jctb.4053
  16. Liu, C., Lin, J., Cao, H., et al., 2019 : Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Clean. Prod., 228(1), pp.801-813. https://doi.org/10.1016/j.jclepro.2019.04.304
  17. Wang, R. C., Lin, Y. C., and Wu, S. H., 2009 : A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries, Hydrometallurgy, 99(3), pp.194-201. https://doi.org/10.1016/j.hydromet.2009.08.005
  18. Chen, X., Xu, B., Zhou, T., et al., 2015 : Separation and recovery of metal values from leaching liquor of mixedtype of spent lithium-ion batteries, Sep. Purif. Technol., 144, pp.197-205. https://doi.org/10.1016/j.seppur.2015.02.006
  19. Han, D., Park, I., Kim, M., et al., 2019 : Study on the optimum conditions for synthesizing a cathode active material precursor in li-ion batteries using a Taylor reactor, Korean J. Met. Mater., 57(6), pp.360-365. https://doi.org/10.3365/KJMM.2019.57.6.360
  20. Kang, J., Senanayake, G., Sohn, J., et al., 2010 : Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with cyanex 272, Hydrometallurgy, 100(3), pp.168-171. https://doi.org/10.1016/j.hydromet.2009.10.010
  21. Mishra, S. and Devi, N., 2011 : Extraction of copper(II) from hydrochloric acid solution by cyanex 921, Hydrometallurgy, 107(1-2), pp.29-33. https://doi.org/10.1016/j.hydromet.2010.12.016
  22. Kagaya, S., Cattrall, R. W., and Kolev, S. D., 2011 : Solidphase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with aliquat 336 as the carrier, Anal. Sci., 27(6), pp.653-657. https://doi.org/10.2116/analsci.27.653
  23. Gammons, C. H. and Seward, T. M., 1996 : Stability of manganese (II) chloride complexes from 25 to 300°C, Geochim. Cosmochim. Acta, 60(22), pp.4295-4311. https://doi.org/10.1016/S0016-7037(96)00275-X
  24. Ji, J. and Cooper, W. C., 1996 : Nickel speciation in aqueous chloride solutions, Electrochim. Acta, 41(9), pp.1549-1560. https://doi.org/10.1016/0013-4686(95)00407-6
  25. Morris, D. F. C. and Short, E. L., 1961 : 1018. Manganese (II) chloride complexes. Part I. Stability constants, J. Chem. Soc., pp.5148-5153. DOI:10.1039/JR9610005148.
  26. Liu, Y., Jeon, H. S., and Lee, M. S., 2015 : Extraction of hydrochloric acid with binary mixtures of tertiary amine and organophosphorus acid and analysis of the interaction between the constituents of these mixtures, Hydrometallurgy, 155, pp.44-50. https://doi.org/10.1016/j.hydromet.2015.04.013
  27. Sato, T., Shimomura, T., Murakami, S., et al., 1984 : Liquidliquid extraction of divalent manganese, cobalt, copper, zinc and cadmium from aqueous chloride solutions by Tricaprylmethylammonium chloride, Hydrometallurgy, 12(2), pp.245-254 https://doi.org/10.1016/0304-386X(84)90037-9