• Title/Summary/Keyword: 코넥터

Search Result 9, Processing Time 0.026 seconds

업계소식

  • Korea Electronics Association
    • Journal of Korean Electronics
    • /
    • v.14 no.1
    • /
    • pp.62-68
    • /
    • 1994
  • PDF

A Shear Bond Chracteristics of Composite Slab with Closed-Shape Deckplate (폐쇄형 데크플레이트를 사용한 합성슬래브의 전단부착 특성에 관한 연구)

  • Ju, Gi Su;Park, Sung Moo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.557-566
    • /
    • 2001
  • Composite slab with deckplate needs sufficient bond strength between deckplate and concrete to conduct composite behavior Composite slab can transfer the shear by either chemical adhesion interface interlock, or active friction. There are several way of mechanical shear connection in composite slab. that is embossments shear connector shape of deckplate etc. Effect of mechanical interaction is deped on shape of deckplate which is to prevent peeling between deckplate and concrete and an amount of shear connector. The behavior and strength of the connection between the decking and the concrete slab due to embossments and end anchorage may be estimated using the push-off tests described in this paper We proposed the equation of shear bond strength in the composite slab It will be use to design by basic data in composite slab.

  • PDF

An Experimental Study on the Behavior of Hybrid Beam Composed of End Reinforced Concrete-Center Steel (단부 철근콘크리트-중앙부 철골로 구성된 복합(複合)보의 거동(擧動)에 관한 실험적 연구)

  • Kang, Byung Su;Kim, Seong Eun;Choi, Hyun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.413-421
    • /
    • 2002
  • This study sought to understand the mechanical behavior according to the shape of the connecting part of the hybrid beam. This part is composed of central steel. with the end reinforced by concrete in the experiment of cyclic loading. The experimental result was compared and verified with the ultimate strength formula. Likewise, the composite effect and the effectiveness of seismic capacity and stress transmission were examined. The types of each setup were as follows: main bars by welding type, reinforcing by end-plate type, reinforcing by shear connector type, and shear connector type. Results showed that the reinforcing by end-plate type and the shear connector type had excellent strength and seismic capacity as well as better stress transmission. This was due to the unity between reinforced concrete and the steel's connecting part. However, the experimental result was somehow different from the previously established ultimate strength formula. Thus, a definite ultimate strength formula is required.

A Study on the strength evaluation for T-type Composite Beam (T형 합성보의 내력평가에 관한 연구)

  • Kim, Sang Mo;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.467-474
    • /
    • 2003
  • Composite action can be achieved by providing shear connectors between the steel top flange and concrete topping. Composite sections are stiffer than the sum of the individual stiffness of slab and beam. They can therefore carry heavier loads or similar loads with appreciably smaller deflection. They are also less prone to transient vibration. In this study, T-type Steel Composite beam (TSC-beam) was developed and tested. The test results of TSC beam were compared with the theoretical results based on composite actions.

An Experimental Study on the Behavior of the T-type Steel Composite Beam (단순지지 T형 합성보의 휨거동에 관한 실험적 연구)

  • Kim, Sang Seup;Kim, Sang Mo;Kim, Sung Bae;Seo, Dong Gee;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.225-233
    • /
    • 2004
  • Composite action is generally achieved by providing shear connections between steel top flange and concrete topping. Composite sections have greater stiffness than the summation of the individual stiffness of slab and beam. Therefore, they can carry larger loads or similar loads with appreciably smaller deflection and are less prone to transient vibration. T-type Steel Composite beam (TSC-beam) was developed to increase these advantages. Ten specimens were tested for this study. During the experiment, crack pattern and deflection of beam were investigated. The examined results of TSC beam system were compared with results from the typical composite beam and RC beam.

Cyclic Load Testing for Weak Axis Joints Connected with SRC Column and RC Beams (SRC기둥-RC보 약축방향 접합부 상세의 구조성능에 대한 실험적 연구)

  • Moon, Jeong-Ho;Lim, Jae-Hyung;Oh, Kyung-Hwan;Kim, Sung-Ho;Lee, Kang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • An objective of this study is to evaluate the structural performance of the weak axis SRC column-RC beam joints by experiments. Although one of common joint types is the connection with standard hooks, it has been required to examine its safety and to settle problems of the joint among practical engineers. Specimen types are classified into two categories, namely the type of standard hook and the type of shape improvement. The first one is consisted of three specimens which are reference type, development length modification type, and development length supplement type. Three specimens for shape improvement were made with variations on the arrangement of longitudinal reinforcements and the development length. Test results based on cyclic loadings were discussed with load-deflection curves, maximum strengths, strength degradations beyond the maximum. It was found that the standard hook types showed premature failures and consequent strength degradations due to splitting of joint concrete. However, satisfactory performance was obtained with the shape improvement type with wing-plate welding. No premature failures and strength degradations were detected with the specimens.