• Title/Summary/Keyword: 케이블돔구조

Search Result 31, Processing Time 0.031 seconds

A Study on the Structural Behavior of Cable Domes (케이블 돔의 구조적 거동 특성에 관한 연구)

  • 한상을;윤종현;이승훈;진영상;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • Cable dome that consists of three component such as cable, strut and fabric membrane has complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system and fabric membrane element is conceived as cladding roof material. One of the important problem of cable dome is to investigate the structural response from external load effect such as snow and wind. When cable dome is subjected to load each structural component has various special structural characteristics. One is that geometrical nonlinearity should be considered because large deformation is occurred from their flexible characteristic. The other is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper researches the physical structural response of cable dome structure and the structural behavior when failure occurred at a part of structure.

  • PDF

Shape Optimization of the Cable Dome System (케이블 돔 시스템의 형상 최적화)

  • 조남철;최승열;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.151-160
    • /
    • 2004
  • Genetic algorithm is the theory of grafting the principle of survival of the fittest in genetics on to the computer algorithm and it is used to solve the optimization problems, especially the shape and size optimization of the structure in Architectural problems. In the size optimization problem discrete variables are used, but series variables have to be used in the shape optimization problem because of the incongruenty. The purpose of this study is to obtain the optimum shape of cable domes by using the real coding genetic algorithm. Generally, the structural performance of the cable domes is influenced very sensitively by pre-stress, geometry and length of the mast because of its flexible characteristic. So, it is very important to decide the optimum shape to get maximum stiffness of cable domes. We use the model to verify the usefulness of this algorithm for shape optimization and analyze the roof system of Seoul Olympic Gymnastic Arena as analytical model of a practical structures. It is confirmed lastly that the optimum shape domes have more stiffness than initial shape ones.

  • PDF

The Shape Optimization of Cable Dome Using Real Coding Genetic Algorithm (실수코팅 유전알고리즘을 이용한 케이블 돔의 형상 최적 설계)

  • 한상을;조남철;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.177-184
    • /
    • 2003
  • The purposes of this study are to develop the real coding genetic algorithm and to obtain the shape optimization of a cable domes by using this scheme. Generally, the structural performance of the cable dome is influenced very sensitively by prestress, geometry and length of the mast because of flexible structures. So, it is very important to decide the optimum shape to get maximum stiffness of cable domes. We use the two models to verify the usefulness of this algorithm for shape optimization and analyze the roof system of Seoul olympic gymnastic arena as one analytical model of practical structures

  • PDF

Geometrically Nonlinear Dynamic Analysis of Cable Domes (케이블 돔의 기하학적 비선형 동적해석)

  • 한상을;서준호;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.61-68
    • /
    • 2003
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic loads, because cable domes are flexible structures whose stiffness is very small and self-weight is very light. Therefore, in this paper, Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of Newmark-β Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

A Study on the Unstable Characteristics of Tensegrity Cable Domes According to Loading Conditions (하중조건에 따른 Tensegrity 케이블 돔의 불안정 거동 특성에 관한 연구)

  • Baek, In-Seong;Jeong, Eul-Seok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.161-166
    • /
    • 2005
  • In spatial structures with large spaces, one important issue in structures with large spaces is how to carry the weight of the roof. A tensegrity cable dome structure is a kind of soft structural system using the tension cable and compression column as a main element. The tensegrity cable dome is built into a variety of shape around the world but then a collapse accident is increasing. Owing to a collapse accident we must grip of the collapse mechanism to prevent an accident and construct the structure with safety and economy. In this study, I investigated the unstable characteristics of the Geiger-type and Flower-type tcnsegrity cable dome structures, which is the lightweight hybrid structures using compression and tension elements continuously, according to the difference of loading conditions.

  • PDF

A Study on the Bifurcation Characteristics of Hybrid Cable Domes under Axisymmetric Load (축대칭 하중을 받는 Hybrid 케이블 돔의 Bifurcation 특성에 관한 연구)

  • 김승덕;백인성;김형석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.277-284
    • /
    • 2003
  • One of important problem, in large space structure, is to overcome the self-weight of roof structure. This problem can be solved with using tension members effectively. Thus the rapid progress of hybrid structure, that makes effective use of the means of settling, has a good effect on realizing the large space. These systems of hybrid structure have the advantages of light weight and its own internal redundancy, but are occurred unstable phenomenon such as bifurcation or snap-through buckling, when the load level is come to the critical point. Among the hybrid structure, cable dome is shown the strong nonlinearity of unstable phenomenon in accordance with the external force. Therefore, the purpose of this study is to analyze and verify comparatively the unstable phenomenon of the Geiger and Flower type cable dome structures under axismmetric load.

  • PDF

The Dynamic Analysis of Cable Dome Structures (케이블 돔의 구조물의 동적 비선형 해석)

  • Seo, Jun-Ho;Han, Sang-Eul;Lee, Sang-Ju
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.113-122
    • /
    • 2004
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic load, because cable domes are flexible structures whose bending stiffness is very small and self-weight is very light. Therefore, in this paper, the Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of the $Newmark-{\beta}$ Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

A Study on the Stress Control Technique of Zetlin-Typed Cable Dome Structures Considering Geometrical Nonlinearity (기학학적 비선형을 고려한 Zetlin형 케이블 돔 구조물의 장력제어 기법에 관한 연구)

  • Jeong, Eul-Seok;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.116-124
    • /
    • 2005
  • The recent large-spatial structures are frequently made from light-weight structural system and it has a good mechanical efficiency and uses new materials. The large space is made by light-weight structural system using tension members mainly, and generally it is called a soft structure. The cable dome structures which are a soft structures are very flexible, the stresses and nodal coordinates of other members are changed when we control the stress of one member. Therefore, we have to do two kind of works for effective and accurate construction of the cable dome structures. The first work is making a working scenario to complete the final objective form and the second is revising constructional errors occurred in process of the actual works. These works are called constructional analysis. At this time, we have to consider geometric nonlinearity to reflect the sensitivity by the initial stresses of cable dome structures, and constructional analysis comes down to a nonlinear problem after all. In this study, we try to approach the constructional analysis of the cable dome structures using the numerical method, and then verify it.

  • PDF

A Study on the Shape Analysis of Cable-Dome Structures (케이블-돔 복합구조의 형상해석에 관한 연구)

  • 권택진;한상을;최옥훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.93-100
    • /
    • 1998
  • The basic systems of spatial structures such as shells, membrane, cable-nets and tensegrity structure have been developed to create the large spaces without column. These structures may have large freedom in scale and form, and especially tensegrity structures are received much attention from the view points of their light weight and aesthetics. But There re some difficulties concerning structural stability, surface formation and construction method. One of the way to solve these problems reasonably is a combination of tensile members and rigid members. A structural system based on this concept is referred to as the "HTS ( Hybrid Tension Structure )". This is a type of flexible structural system which is unstable initially, because the cable material has little initial rigidity. As cable - dome hybrid structures is a type of HTS, the initial stress for the self- equilibrated system having stable state have to be introduced. To determine initial stress having stable state, the shape finding analysis is required before the stress - deformation analysis. In this paper, the primary objective is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity for shape finding of cable-dome, and to propose the method to decide the initial stress by the shape analysis of cable-dome hybrid structure with the self-equilibrated state.

  • PDF

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF