• Title/Summary/Keyword: 컨테이너 야드

Search Result 105, Processing Time 0.022 seconds

Dual Cycle Plan for Efficient Ship Loading and Unloading in Container Terminals (컨테이너 터미널의 효율적인 선적 작업을 위한 Dual Cycle 계획)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.555-562
    • /
    • 2009
  • At container terminals, a major measurement of productivity can be work-efficiency in quay-side. At the apron, containers are loaded onto the ship and unloaded to apron by Q/C(Quay Crane). For improving the productivity of quay crane, the more efficient Y/T(Yard Tractor) operation method is necessary in container terminals. Between quay-side and yard area, current transferring methods is single-cycling which doesn't start loading unless it finishes unloading. Dual-cycling is a technique that can be used to improve the productivity of quay-side and utility of yard tractor by ship loading and unloading simultaneously. Using the dual-cycling at terminals only necessitates an operational change without purchasing extra equipment. Exactly, Y/T operation method has to be changed the dedicate system to pooling system. This paper presents an efficient ship loading and unloading plan in container terminals, which use the dual-cycling. We propose genetic and tabu search algorithm for this problem.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS 개발에 관한 연구)

  • 손동섭;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.113-119
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. During the operation of crane system in container yard it is necessary to control the crane trolley position and loop length so that the swing of the hanging container is minimized We can do development of unmanned automation control system using automation travel control technique and anti-sway technique in crane system. Therefore, we designed a controller for Automation travel control to control the transfer crane system. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

  • PDF

An Analysis of Efficiency of Container Terminal Companies in Gwangyang, Busan and Incheon Port (컨테이너터미널 운영사별 효율성 분석)

  • Kim, Jae-Young;Chin, Hyung-In;Kim, Soo-Man
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.4
    • /
    • pp.187-205
    • /
    • 2011
  • In considering the size of container logistic flow of Korea, one-port as a hub port is desirable in Busan Port, but as development of Busan Port and Gwangyang Port began as two-ports, they are good as mega hub ports. In case when ports of other regions such as Incheon Port are additionally developed, it is very likely that they become feeder ports rather than mega hub ports. As capital area uses Incheon Port and Pyeongtaek Port for transportation, fierce competition arises due to excessive facilities of terminal companies and it is not easy to be profitable. Therefore, it is more profitable to develop regional hub ports centering on near-sea routes of Korea China Japan rather than local ports such as Incheon Port and Pyeongtaek Port for intensive trade and transportation in the capital area. To mitigate excessive competition between container terminal companies, we need administrative guidance to maintain adequacy through comparing tariffs between ports of Japan and China which are in competitive relations with Korean ports. This study analysed efficiency of container terminal companies in Gwangyang Port, Busan Port and Incheon Port using data for five years from 2006 to 2010. As analytical variables, length of quay, floor area of yard, the number of cranes and employees were analytical variables and a total freight volume was a productive factor.

A Study on the Non-Productive Movement in Container Terminal (컨테이너 터미널의 비생산적인 활동에 관한 연구)

  • Shin, Seong-Hyeon;Kim, In-Young;Kim, Hwan-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.239-240
    • /
    • 2018
  • In order to improve the productivity and continuous competitiveness of container terminals, it is necessary to make efforts to reduce operational losses at each terminal. As a study on this, it is necessary to study the non-productivity movement based on the shuffle(re-handling) in the yard analysis is needed. In this study, non - productive activity factors were classified by prefecture, transporter, shippers and terminal based on operation data of domestic A terminal. As a result, 14.7% is due to the causes of shipping companies and shipping companies, and in addition, 85.3% of the respondents indicated that they were responsible for the terminal operation. In order to minimize the above factors, it is necessary to reduce the non-productive activity through rapid information processing and pre-information acquisition from shipping companies, and minimize the influence of bulge-out through installation of concrete blocks in the equipment field.

  • PDF

Method of calculating the congestion of container terminals centered on the working hours of unloading equipment (하역장비 작업시간 중심의 컨테이너터미널 혼잡도 산정방식)

  • Jae-Young Shin;Hyun-Jun Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.61-62
    • /
    • 2023
  • There have been cases where the number of port workers has temporarily decreased due to COVID-19. To prevent the spread of COVID-19, a number of workers were quarantined, resulting in bottlenecks and waiting throughout the port operation process, increasing the congestion of terminals. As a result, problems such as a decrease in terminal operation efficiency occurred. However, it is understood that congestion centered on unloading equipment inside the terminal is not clearly calculated. Terminal congestion is thought to be a key factor directly related to the operational efficiency of the terminal. The congestion calculation method generally used in various fields measures congestion based on image-based data. Due to the nature of the loading and unloading equipment that moves according to the quantitative loading plan, it is unreasonable to apply the existing congestion calculation method. Therefore, this study presented a method of calculating terminal congestion using equipment waiting time and turnaround time, and verified the statistical significance of the congestion calculated using data from Terminal A of Busan Port.

  • PDF

Cycle Time Models for Yard Cranes Considering Block Layouts in Container Terminals (컨테이너 터미널에서 블록의 레이아웃을 고려한 야드 크레인의 주기시간 모형)

  • Lee, Byung Kwon;Kim, Kap Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.110-125
    • /
    • 2007
  • Various different types of yard cranes are used in container terminals. Examples are rubber tired gantry cranes,rail mounted gantry cranes, overhead bridge cranes, dual rail-mounted gantry cranes, and automated stacking cranes. The kinematics and handling characteristics of these yard cranes are different from each other. Ttiis study analyses charactehstics of generic types of yard cranes which represent various yard cranes m practice Demg used in several types of block layouts, Considering specifications of yard cranes and block layouts, expected cycle times and variances of the cycle time are estimated for different handling activities.

Designing Container Blocks with Automated Rail-Mounted Gantry Cranes in Container Terminals (컨테이너 터미널에서 자동화 야드 크레인이 설치된 블록의 설계)

  • Lee, Byung-Kwon;Kim, Kap-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.73-86
    • /
    • 2009
  • This paper discusses a method of determining the optimal design of a block. A horizontal layout of blocks is assumed in which transfer points are located at a side of the block. Each block has several transfer points (TPs) each of which is assigned to a group of adjacent bays and located at the center of the assigned group. The goal is to find the optimal size of a block and the optimal number of TPs while minimizing the total cost consisting of the fixed and operational cost of yard cranes (YCs), the operational cost of internal trucks, and the installation cost of TPs. Constraints on the maximum expected system time of trucks are imposed for the optimization. Formulas for estimating handling operation cycle times of a YC are derived analytically. Numerical experiments are conducted to illustrate optimal block designs for a given set of data.

Analytical Models for the Optimal Number and the Optimal Operation of Yard Trucks in Container Terminal (컨테이너 터미널의 야드 트럭의 최적 대수와 최적 운행을 위한 해석 모형)

  • Kim, Ki-Young
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.498-503
    • /
    • 2007
  • The synchronized operation of a quay crane(QC) and a transfer crane(TC) increases the productivity of a container terminal. In this paper, analytical models are suggested for the optimal number and the optimal operation of the yard trucks (YTs) which travel between a quay crane and a transfer crane in a container terminal. YT may represent yard tractor, AGV and shuttle carrier. The analytical models are so simple and useful that the analysis and the results of this paper can be used not only in container terminal practices but also in many other application fields.

항만용 자율협력주행 동적지도(LDM) 및 관제용 위치인식 설계 방안 연구

  • Kim, Gil-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.157-158
    • /
    • 2020
  • 항만용 자율주행 야드트럭운행 환경은 무신호교차로 주행, 낮은 GPS정확도, 악천후상황주행, 이송 컨테이너 위치변경등과 같이 일반 도로의 센서기반의 자율주행차량 운행과 다르게 매우 복잡하다. 이를 위해서는 항만내 특성을 반영한 실시간 위치, 속도 등에 대한 정확한 인식이 중요한 요소이다. 이를 위해서 센서융합과 V2X기반의 복합적인 항만용 실시간 로컬 동적지도 (Local Dynamic Map) 생성 및 V2X기반의 협력측위를 통하여서 기존의 독립적인 자율주행차량의 위치 인식보다 더 개선된 고정밀 위치 인식 정보추출이 필요하다. 본 연구에서는 복합적인 항만용 동적지도 생성관리시스템의 설계 방안 및 협력측위 기술 적용 방안을 제시하고 이를 활용한 항만 구역내 자율주행차량 및 모든 화물 이송장비들의 실시간 위치 인식뿐만 아니라 이동체의 사전 충돌예측 및 비상정지 안전 제어 가능한 V2X 기반의 인텔리젼스 한 3차원 관제시스템 설계 방안을 제시하고자 한다.

  • PDF

A Study on the Prediction of Yard Tractors Required by Vessels Arriving at Container Terminal (컨테이너터미널 입항 선박별 야드 트랙터 소요량 예측에 관한 연구)

  • Cho, Hyun-Jun;Shin, Jae-Young
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • Currently, the shipping and port industries are implementing strategies to improve port processing capabilities through the expansion and efficient operation of port logistics resources to survive fierce competition with rapidly changing trends. The calculation of the port's processing capacity is determined by the loading and unloading equipment installed at the dock, and the port's processing capacity can be improved through various methods, such as additional deployment of logistics resources or efficient operation of resources in use. However, it is difficult to expect an improvement effect in a short period of time because the additional deployment of logistics resources is clearly limited in time is clear. Therefore, it is a feasible way to find an efficient operation method for resources being used to improve processing capacity. Domestic ports are also actively promoting informatization and digitalization with the development of the 4th industrial revolution technology. However, the calculation of the number of Y/T (Yard Tractor) assignments in the current unloading process depends on expert experience, and related previous studies also focus on the allocations of Y/T or Calculation of the total number of Y/T required. Therefore, this study analyzed the factors affecting the number of Y/T allocations using the loading and unloading information of incoming ships, and based on this, cluster analysis, regression analysis, and deep neural network(DNN) model were used.