• Title/Summary/Keyword: 커널 회귀

Search Result 67, Processing Time 0.03 seconds

Korea-specified Maximum Expected Utility Model for the Probability of Default (기대효용최대화를 통한 한국형 기업 신용평가 모형)

  • Park, You-Sung;Song, Ji-Hyun;Choi, Bo-Seung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.573-584
    • /
    • 2007
  • A well estimated probability of default is most important for constructing a good credit scoring process. The maximum expected utility (MEU) model has been suggested as an alternative of the traditional logistic regression model. Because the MEU model has been constructed using financial data arising from North America and European countries, the MEU model may not be suitable to Korean private firms. Thus, we propose a Korea-specific MEU model by estimating the parameters involved in kernel functions. This Korea-specific MEU model is illustrated using 34,057 private firms to show the performance of the MEU model relative to the usual logistic regression model.

Ensemble Machine Learning Model Based YouTube Spam Comment Detection (앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지)

  • Jeong, Min Chul;Lee, Jihyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.576-583
    • /
    • 2020
  • This paper proposes a technique to determine the spam comments on YouTube, which have recently seen tremendous growth. On YouTube, the spammers appeared to promote their channels or videos in popular videos or leave comments unrelated to the video, as it is possible to monetize through advertising. YouTube is running and operating its own spam blocking system, but still has failed to block them properly and efficiently. Therefore, we examined related studies on YouTube spam comment screening and conducted classification experiments with six different machine learning techniques (Decision tree, Logistic regression, Bernoulli Naive Bayes, Random Forest, Support vector machine with linear kernel, Support vector machine with Gaussian kernel) and ensemble model combining these techniques in the comment data from popular music videos - Psy, Katy Perry, LMFAO, Eminem and Shakira.

A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems (분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법)

  • Kim Eun-Mi;Park Seong-Mi;Kim Kwang-Hee;Lee Bae-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1021-1028
    • /
    • 2005
  • The general solution for classification and regression problems can be found by matching and modifying matrices with the information in real world and then these matrices are teaming in neural networks. This paper treats primary space as a real world, and dual space that Primary space matches matrices using kernel. In practical study, there are two kinds of problems, complete system which can get an answer using inverse matrix and ill-posed system or singular system which cannot get an answer directly from inverse of the given matrix. Further more the problems are often given by the latter condition; therefore, it is necessary to find regularization parameter to change ill-posed or singular problems into complete system. This paper compares each performance under both classification and regression problems among GCV, L-Curve, which are well known for getting regularization parameter, and kernel methods. Both GCV and L-Curve have excellent performance to get regularization parameters, and the performances are similar although they show little bit different results from the different condition of problems. However, these methods are two-step solution because both have to calculate the regularization parameters to solve given problems, and then those problems can be applied to other solving methods. Compared with UV and L-Curve, kernel methods are one-step solution which is simultaneously teaming a regularization parameter within the teaming process of pattern weights. This paper also suggests dynamic momentum which is leaning under the limited proportional condition between learning epoch and the performance of given problems to increase performance and precision for regularization. Finally, this paper shows the results that suggested solution can get better or equivalent results compared with GCV and L-Curve through the experiments using Iris data which are used to consider standard data in classification, Gaussian data which are typical data for singular system, and Shaw data which is an one-dimension image restoration problems.

Online Information Retrieval and Changes in the Restaurant Location: The Case Study of Seoul (온라인 정보검색과 음식점 입지에 나타나는 변화: 서울시를 사례로)

  • Lee, Keumsook;Park, Sohyun;Shin, Hyeyoung
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.56-70
    • /
    • 2020
  • This study identifies the impact of social network service (SNS) on the spatial characteristics of retail stores locations in the hyper-connected society, which have been closely related to the everyday lives of urban residents. In particular, we focus on the changes in the spatial distribution of restaurants since the information retrieval process was added to the decision-making process of a consumer's restaurant selection. Empirically, we analyze restaurants in Seoul, Korea since the smart-phone was introduced. By applying the kernel density estimation and Moran's I index, we examine the changes in the spatial distribution pattern of restaurants during the last ten years for running, newly-open and closed restaurants as well as SNS popular ones. Finally, we develop a spatial regression model to identify geographic features affecting their locations. As the results, we identified geographical variables and online factors that influence the location of restaurants. The results of this study could provide important groundwork for food and beverage location planning and policy formulation.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

Testing of a discontinuity point in the log-variance function based on likelihood (가능도함수를 이용한 로그분산함수의 불연속점 검정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Let us consider that the variance function in regression model has a discontinuity/change point at unknown location. Yu and Jones (2004) proposed the local polynomial fit to estimate the log-variance function which break the positivity of the variance. Using the local polynomial fit, Huh (2008) estimate the discontinuity point of the log-variance function. We propose a test for the existence of a discontinuity point in the log-variance function with the estimated jump size in Huh (2008). The proposed method is based on the asymptotic distribution of the estimated jump size. Numerical works demonstrate the performance of the method.

  • PDF

Design and Performance Test of Large-Area Susceptor for the Improvement of Temperature Uniformity (온도 균일도 향상을 위한 대면적 서셉터의 설계 및 성능 시험)

  • Yang, Hac Jin;Kim, Seong Kun;Cho, Jung Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3714-3721
    • /
    • 2015
  • Although sheath-type heating line is generally used for susceptor heater, performance deterioration problems in temperature uniformity occurs in the case of large scale and high temperature condition. We developed new design and prototype of the susceptor using sheet metal to provide performance improvement in temperature uniformity. Temperature uniformity below 1.4% in the surface temperature condition of $450^{\circ}C$ was verified in the susceptor prototype. Also we developed Kernel regression algorithm to estimate measured temperature using temperature learning data. The reliability of the measured temperature uniformity was confirmed by comparative analysis between predicted data and measured data.

A comparison of imputation methods using nonlinear models (비선형 모델을 이용한 결측 대체 방법 비교)

  • Kim, Hyein;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.543-559
    • /
    • 2019
  • Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models.

A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant (발전플랜트 성능데이터 학습에 의한 발전기 출력 추정 모델)

  • Yang, HacJin;Kim, Seong Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8753-8759
    • /
    • 2015
  • Establishment of analysis procedures and validated performance measurements for generator output is required to maintain stable management of generator output in turbine power generation cycle. We developed turbine expansion model and measurement validation model for the performance calculation of generator using turbine output based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). We also developed verification model for uncertain measurement data related to the turbine and generator output. Although the model in previous researches was developed using artificial neural network and kernel regression, the verification model in this paper was based on algorithms through Support Vector Machine (SVM) model to overcome the problems of unmeasured data. The selection procedures of related variables and data window for verification learning was also developed. The model reveals suitability in the estimation procss as the learning error was in the range of about 1%. The learning model can provide validated estimations for corrective performance analysis of turbine cycle output using the predictions of measurement data loss.

A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle (주급수 유량의 형상 분류 및 추정 모델에 대한 연구)

  • Yang, Hac Jin;Kim, Seong Kun;Choi, Kwang Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • Corrective thermal performance analysis is required for thermal power plants to determine performance status of turbine cycle. We developed classification method for main feed water flow to make precise correction for performance analysis based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). The classification is based on feature identification of status of main water flow. Also we developed predictive algorithms for corrected main feed-water through Support Vector Machine (SVM) Model for each classified feature area. The results was compared to estimations using Neural Network(NN) and Kernel Regression(KR). The feature classification and predictive model of main feed-water flow provides more practical methods for corrective thermal performance analysis of turbine cycle.