DOI QR코드

DOI QR Code

주급수 유량의 형상 분류 및 추정 모델에 대한 연구

A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle

  • 투고 : 2014.10.30
  • 심사 : 2014.12.08
  • 발행 : 2014.12.31

초록

터빈 사이클의 성능 상태량을 결정하기 위한 보정 열 성능 분석은 발전소의 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 유용하고 정확한 성능 분석을 위해서 산업 표준인 ASME PTC를 기분으로 하여 성능 데이터를 사용하여 주급수 유량의 영역별 판정 알고리듬을 개발하고 각 영역별 추정 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관관계를 기반으로 형상 분류를 제시하고, 이를 기반으로 서포트 벡터 머신 모델링을 이용하여 추정 모델을 구성하였으며, 서포트 벡터 머신 모델링의 우수성을 검증하기 위하여 신경 회로망 모델, 커널 회귀 모델과 비교하였다. 주급수 유량의 형상 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 향상된 성능 분석에 기여할 것이다.

Corrective thermal performance analysis is required for thermal power plants to determine performance status of turbine cycle. We developed classification method for main feed water flow to make precise correction for performance analysis based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). The classification is based on feature identification of status of main water flow. Also we developed predictive algorithms for corrected main feed-water through Support Vector Machine (SVM) Model for each classified feature area. The results was compared to estimations using Neural Network(NN) and Kernel Regression(KR). The feature classification and predictive model of main feed-water flow provides more practical methods for corrective thermal performance analysis of turbine cycle.

키워드

참고문헌

  1. American Society of Mechanical Engineers, 1976, Performance Test Code 6, "Steam Turbines."
  2. American Society of Mechanical Engineers, 1982, Performance Test Code 6A, "Appendix A to Test Code for Steam Turbines."
  3. American Society of Mechanical Engineers, 1978, Performance Test Code 12.1, "Closed Feed Water Heaters."
  4. American Society of Mechanical Engineers, 1983, Performance Test Code 12.2, "Steam Condensing Apparatus.", USA, pp. 337-350.
  5. Munchausen, J. H., 1995, "EPRI Performance Enhancement Program," Proceedings of the American Power Conference, USA, pp. 519-521.
  6. Spencer, R.C., Cotton, K.C. and Cannon, C.N., 1974, "A Method for Predicting the Performance of Steam Turbine-Generators, 16,500KW and Larger," General Electric Co. Report.
  7. British Electricity International, 1991, "Modern Power Station Practice: Volume G Station Operation and Maintenance"
  8. Bae, H., Kwon, S.I., Lee, J.K., Song, C.K., Kim, S.S., 2002, "The Fault Diagnosis using Two-Steps Neural Networks for Nuclear Power Plants", KIIS, Vol. 12, No. 2, pp. 129-134.
  9. Kim, Y.S., Lee, D.H., Kim, S.K., 2010, "Rotating Machinery Fault Classification Using Support Vector Machines with Optimal Features for Each Fault Type", RD-KSME, Spring Conference, pp. 84-91.
  10. Kim, S.K. and Choi, K.H., 2001, "Development of Performance Analysis System (NOPAS) for Turbine Cycle of Nuclear Power Plant", Journal of Korean Nuclear Society, Vol. 33, No. 1, pp. 211-218.
  11. Kim, S.K. and Choi, K.H., 2001, "Development of Performance Analysis Methodology for Nuclear Power Plant Turbine Cycle using Validation Model of Performance Measurements", Journal of KSME, Vol. 24, No. 12, pp. 1625-1634.
  12. Kim, S.K. and Choi, K.H., 2000, "Thermal Performance Analysis System Based on Measurement Validation for Nuclear Power Plant," 4th KSME-JSME Thermal Engineering Conference.
  13. Korea Hydraulic and Nuclear Co., 2003, "User's Guide for PERUPS, Programmer's Guide for PERUPS, Technological Guide for PERUPS".
  14. Korea Hydraulic and Nuclear Co., 2003, "Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yongwang 3,4 Units", Research Report Korea Hydraulic and Nuclear Co.
  15. Kim, S.K. and Choi, K.H., 2005, "PERUPS (PERformance UPgrade System) for On-Line Performance Analysis of Turbine Cycle of Nuclear Power Plant", Journal of Korean Nuclear Society, Vol. 37 No. 2, pp. 165-172.
  16. Robeto Battiti, 1994, "Using Mutual Informaion for Selecting Features in Supervised Neural Net Learning", IEEE Transactions on Neural Networks, Vol. 5, No.4, pp. 537-550. https://doi.org/10.1109/72.298224
  17. Andrew D. Back, Thomas P. Trappenberg, 1999, "Input Variable Selection Using Independent Componet Analysis", Internation Joint Conference on Neural Networks, IJCNN '99, Vol. 2, pp. 989-992.
  18. T.M.K.G. Fernando, H.R. Maier, G.C. Dnady, 2009, "Selection of input variables for data driven models: An average shifted histogram partial mutual information estimatior approach", Journal of Hydrology, Vol. 367, pp. 165-176. https://doi.org/10.1016/j.jhydrol.2008.10.019
  19. C.J.C. Burges, 1998, "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Vol.2, pp.121-167. https://doi.org/10.1023/A:1009715923555
  20. Nello Cristianini, John Shawe-Taylor, 2000, "Introduction to Support Vector Machines and other Kernel-based Learning Method", Cambridge University Press.

피인용 문헌

  1. Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine vol.17, pp.5, 2016, https://doi.org/10.5762/KAIS.2016.17.5.364
  2. A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8753