• 제목/요약/키워드: 커널추정량

검색결과 34건 처리시간 0.027초

잔차 수정을 이용한 불연속 분산함수의 비모수적 추정 (Nonparametric estimation of the discontinuous variance function using adjusted residuals)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.111-120
    • /
    • 2016
  • 대부분의 불연속 회귀함수의 커널추정량은 알고 있거나 추정된 불연속점을 기준으로 자료를 분리하여 각각을 독립적으로 회귀함수를 적합하고 있다. 회귀모형에서 분산함수가 불연속점을 가지고 있을 때에도 잔차제곱들을 이용하여 위와 같은 불연속 회귀함수의 커널추정법을 활용하고 있다. Kang 등 (2000)은 $M{\ddot{u}}ller$ (1992)의 불연속점과 점프크기 커널추정량을 이용하여 반응변수의 표본을 연속인 회귀함수로부터 표본인 것처럼 수정하여 불연속 회귀함수를 추정하였다. 본 연구에서는 불연속 분산함수를 추정하기 위하여 Kang 등 (2000)의 방법을 이용한다. Kang과 Huh (2006)의 분산함수의 불연속점과 점프크기 추정량으로 잔차제곱들을 수정하고, 수정된 잔차제곱들을 이용하여 불연속 분산함수 커널추정량을 제안할 것이다. 제안된 추정량의 적분제곱오차의 수렴속도를 보여주고 모의실험을 통하여 기존의 추정량과 제안된 추정량을 비교하고자 한다.

확률밀도함수의 불연속점 추정을 위한 띠폭 선택 (Bandwidth selection for discontinuity point estimation in density)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권1호
    • /
    • pp.79-87
    • /
    • 2012
  • Huh (2002)는 확률밀도함수가 하나의 불연속점을 가질 때, 한쪽방향커널함수를 이용하여 확률 밀도함수의 오른쪽과 왼쪽 커널추정량을 제시하여 그 차를 최대로 하는 점을 불연속점의 위치추정량으로 제안하였다. 커널추정량의 평활모수인 띠폭의 선택의 중요함은 익히 알려져 있다. 최대가능도 교차타당성은 확률밀도함수의 커널추정량에서 띠폭 선택의 기준으로 널리 쓰여지고 있다. 본 연구에서는 한쪽방향커널함수를 이용한 확률밀도함수의 오른쪽과 왼쪽 커널추정량들의 띠폭의 선택 방법을 Hart와 Yi (1998)의 한쪽방향교차타당성의 방법론을 최대가능도교차타당성에 적용하여 제안하고자 한다. 소표본 모의실험을 통하여 연구결과를 제시하고자 한다.

커널 확률밀도함수 추정량을 이용한 적합도 검정에 관한 연구

  • 석경하;김대학
    • Journal of the Korean Data and Information Science Society
    • /
    • 제5권2호
    • /
    • pp.1-9
    • /
    • 1994
  • 확률밀도함수의 적합도 검정을 위한 새로운 검정 통계량을 소개하고 커널확률밀도함수 추정량을 이용한 제안된 검정 통계량의 점근 정규성을 규명하였다. 제안된 통계량과 콜모고르프-스미르노프 통계량과의 소표본 모의 실험비고를 통하여 제안된 통계량의 우수성을 입증하였다.

  • PDF

HUBER의 M-추정함수의 조율상수와 커널추정함수의 평활계수의 관계 (The Bending Constant in Huber’s Function in Terms of a Bandwidth in Density Estimator)

  • 박노진
    • 응용통계연구
    • /
    • 제14권2호
    • /
    • pp.357-367
    • /
    • 2001
  • Huber의 M-추정함수의 형태는 조율상수가 주어질 때 비로소 그 형태가 결정된다. 조율상수를 커널밀도함수추정량의 평활계수를 이용하여 구하여 보았고, 모의실험을 통해 기존에 상요되는 조율상수들과 그 성능을 비교하여 보았다. 그 결과 새로운 방법에 의해 구해진 조율상수가 기존의 조율상수를 사용하는 경우 보다 모의실험을 통해 얻은 추정치의 분산이 작게되는 경우가 있음을 알았다.

  • PDF

희박다항분포확률에 대한 국소최대우도 추정량

  • 백장선
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.29-34
    • /
    • 2002
  • $p=(p_{}1,p_{2},{\cdots},p_{k})^{T}$의 확률벡터를 가진 다항분포로부터 관측된 칸 돗수(cell frequency) 벡터가 $N=(N_{1},N_{2},{\cdots},N_{k})^{T}$이며 ${\sum}{\limits}_{j=1}^{k}N_{j}=n$이라 하자. 총돗수 n이 칸의 총갯수 k에 비하여 상대적으로 매우 작을 때 이러한 이산형 자료를 희박다항분포자료(sparse multinomial data)라 한다. 이러한 희박다항분포자료의 칸들이 순서화 되어 있을 때 우리는 i번째 칸의 확률 $p_{i}$를 돗수 추정량 $N_{j}/n$ 들을 평활함으로써 추정 할 수 있다. Aerts, et al.(1997)과 Baek(1998) 등에 의해 제안된 국소최소제곱기준에 근거한 국소다항커널추정량은 희박점근일치성의 좋은 성질을 가짐에도 불구하고 확률추정지가 음수값을 가질 수 있는 단점을 내포하고 있다. 본 연구에서는 이러한 단점을 극복하기 위하여 국소최대우도 기준에 근거한 새로운 커널추정량을 제안하고, 그것의 점근적 성질을 연구하였다.

  • PDF

교차타당성을 이용한 확률밀도함수의 불연속점 추정의 띠폭 선택 (Bandwidth selections based on cross-validation for estimation of a discontinuity point in density)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.765-775
    • /
    • 2012
  • 교차타당성은 커널추정량의 평활모수인 띠폭의 선택 방법으로 흔히 활용되고 있다. 연속인 확률밀도함수의 커널추정량의 띠폭 선택으로 널리 쓰이는 교차타당성 방법으로는 최대가능도교차타당성과 더불어 최소제곱교차타당성과 편의교차타당성이 있다. 확률밀도함수가 하나의 불연속점을 가질 때, Huh (2012)는 불연속점 추정을 위한 커널추정량의 띠폭 선택으로 최대가능도교차타당성을 이용한 방법을 제시하였다. 본 연구에서는 Huh (2012)에 의해 최대가능도교차타당성으로 제안된 띠폭선택의 방법과 같이 한쪽방향커널함수를 이용한 최소제곱교차타당성과 편의교차타당성으로 띠폭 선택 방법을 제시하고, 이들 띠폭 선택 방법들과 Huh (2012)의 최대가능도교차타당성을 이용한 띠폭 선택 방법을 모의실험을 통하여 비교연구 하고자 한다.

불연속 로그분산함수의 커널추정량들의 비교 연구 (Comparison study on kernel type estimators of discontinuous log-variance)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.87-95
    • /
    • 2014
  • 분산함수가 불연속인 경우 Kang과 Huh (2006)는 잔차제곱을 이용한 Nadaraya-Watson 추정량으로 분산함수를 추정하였다. 음의 실수 값도 가질 수 있는 로그분산함수를 추정 대상으로 하여, 오차제곱의 분포를 ${\chi}^2$-분포로 가정하고 국소선형적합을 이용한 불연속 로그분산함수의 추정이 Huh(2013)에 의해 연구되었다. Chen 등 (2009)은 연속인 로그분산함수를 로그잔차제곱을 이용한 국소선형적합으로 추정하였다. 본 연구는 Chen 등의 추정법을 이용하여 불연속인 로그분산함수의 추정량을 제시하였다. 기존의 제안된 불연속인 로그분산함수의 추정량들과 제안된 추정량을 모의실험을 통하여 비교연구하고자 한다. 한편, 로그분산함수가 연속이지만 그 미분된 함수가 불연속일 경우, Huh (2013)의 방법과 제안된 방법으로 적합된 국소선형의 기울기를 이용하여 불연속인 미분된 로그 분산함수의 추정량을 제시하고자 한다. 이들 추정량의 비교 연구 또한 모의실험을 통하여 제시하고자 한다.

다변량 확률분포함수의 추정을 위한 MKDE-ebd 개발 (Development of MKDE-ebd for Estimation of Multivariate Probabilistic Distribution Functions)

  • 강영진;노유정;임오강
    • 한국전산구조공학회논문집
    • /
    • 제32권1호
    • /
    • pp.55-63
    • /
    • 2019
  • 공학문제에서 많은 확률 변수들은 상관성을 가지고 있고, 입력변수의 상관성은 기계시스템의 통계적 성능 분석 결과에 큰 영향을 미친다. 하지만, 상관 변수들은 결합분포함수를 모델링하기 어렵다는 이유로 종종 독립변수로 취급되거나 특정한 모수적 모델로 표현되는 경우가 많으며, 특히 데이터가 적은 경우 결합분포함수를 정확히 모델링하는데 더 큰 어려움이 있다. 본 연구에서 개발된 경계데이터를 이용한 다변량 커널밀도추정은 비선형성을 갖는 다양한 형태의 다변량 확률 분포 추정을 위해 개발되었다. 다변량 커널밀도추정은 주어진 데이터와 균등분포함수의 파라미터의 신뢰구간으로부터 생성된 경계데이터를 결합하여 데이터의 질과 수에 덜 민감하다. 따라서 제안된 방법은 보수적인 통계모델링과 신뢰성 해석 결과를 도출할 수 있으며, 통계시뮬레이션과 공학예제를 통해 그 성능을 검증하였다.

변수평활량을 이용한 커널회귀함수 추정 (On variable bandwidth Kernel Regression Estimation)

  • 석정하;정성석;김대학
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.179-188
    • /
    • 1998
  • 커널형 회귀함수의 추정법 중에서 국소 다항회귀 추정법이 가장 우수한 것으로 알려져 있다. 국소다항회귀 추정법에서도 다른 종류의 커널추정량과 마찬가지로 평활량이 중요한 역할을 한다. 특히 회귀함수가 복잡한 구조를 가질 때 변수평활량(variable band-width)을 사용하는 것이 타당할 것이다. 본 연구에서는 완전자료기저(fully automatic, fully data-driven) 변수평활량 선택법을 제안한다. 이 선택법은 편향과 분산의 예비추정에 필요한 평활량을 교차타당성 방법으로 선택하여 MSE를 추정하고 그 값을 최소화하는 평활량을 택하는 것이다. 제안된 방법의 우수성을 모의실험을 통하여 확인하였다. 그리고 제안된 방법은 자료점이 성긴(sparse)부분에서 생길 수 있는 문제점 즉 X'X의 비정칙성(non-singularity)을 해결할 수 있는 방법이라는 데에도 큰 의미가 있다.

  • PDF

대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형 (Divide and conquer kernel quantile regression for massive dataset)

  • 방성완;김재오
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.569-578
    • /
    • 2020
  • 분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.