Journal of the Korean Data and Information Science Society
/
제27권1호
/
pp.111-120
/
2016
대부분의 불연속 회귀함수의 커널추정량은 알고 있거나 추정된 불연속점을 기준으로 자료를 분리하여 각각을 독립적으로 회귀함수를 적합하고 있다. 회귀모형에서 분산함수가 불연속점을 가지고 있을 때에도 잔차제곱들을 이용하여 위와 같은 불연속 회귀함수의 커널추정법을 활용하고 있다. Kang 등 (2000)은 $M{\ddot{u}}ller$ (1992)의 불연속점과 점프크기 커널추정량을 이용하여 반응변수의 표본을 연속인 회귀함수로부터 표본인 것처럼 수정하여 불연속 회귀함수를 추정하였다. 본 연구에서는 불연속 분산함수를 추정하기 위하여 Kang 등 (2000)의 방법을 이용한다. Kang과 Huh (2006)의 분산함수의 불연속점과 점프크기 추정량으로 잔차제곱들을 수정하고, 수정된 잔차제곱들을 이용하여 불연속 분산함수 커널추정량을 제안할 것이다. 제안된 추정량의 적분제곱오차의 수렴속도를 보여주고 모의실험을 통하여 기존의 추정량과 제안된 추정량을 비교하고자 한다.
Journal of the Korean Data and Information Science Society
/
제23권1호
/
pp.79-87
/
2012
Huh (2002)는 확률밀도함수가 하나의 불연속점을 가질 때, 한쪽방향커널함수를 이용하여 확률 밀도함수의 오른쪽과 왼쪽 커널추정량을 제시하여 그 차를 최대로 하는 점을 불연속점의 위치추정량으로 제안하였다. 커널추정량의 평활모수인 띠폭의 선택의 중요함은 익히 알려져 있다. 최대가능도 교차타당성은 확률밀도함수의 커널추정량에서 띠폭 선택의 기준으로 널리 쓰여지고 있다. 본 연구에서는 한쪽방향커널함수를 이용한 확률밀도함수의 오른쪽과 왼쪽 커널추정량들의 띠폭의 선택 방법을 Hart와 Yi (1998)의 한쪽방향교차타당성의 방법론을 최대가능도교차타당성에 적용하여 제안하고자 한다. 소표본 모의실험을 통하여 연구결과를 제시하고자 한다.
Huber의 M-추정함수의 형태는 조율상수가 주어질 때 비로소 그 형태가 결정된다. 조율상수를 커널밀도함수추정량의 평활계수를 이용하여 구하여 보았고, 모의실험을 통해 기존에 상요되는 조율상수들과 그 성능을 비교하여 보았다. 그 결과 새로운 방법에 의해 구해진 조율상수가 기존의 조율상수를 사용하는 경우 보다 모의실험을 통해 얻은 추정치의 분산이 작게되는 경우가 있음을 알았다.
$p=(p_{}1,p_{2},{\cdots},p_{k})^{T}$의 확률벡터를 가진 다항분포로부터 관측된 칸 돗수(cell frequency) 벡터가 $N=(N_{1},N_{2},{\cdots},N_{k})^{T}$이며 ${\sum}{\limits}_{j=1}^{k}N_{j}=n$이라 하자. 총돗수 n이 칸의 총갯수 k에 비하여 상대적으로 매우 작을 때 이러한 이산형 자료를 희박다항분포자료(sparse multinomial data)라 한다. 이러한 희박다항분포자료의 칸들이 순서화 되어 있을 때 우리는 i번째 칸의 확률 $p_{i}$를 돗수 추정량 $N_{j}/n$ 들을 평활함으로써 추정 할 수 있다. Aerts, et al.(1997)과 Baek(1998) 등에 의해 제안된 국소최소제곱기준에 근거한 국소다항커널추정량은 희박점근일치성의 좋은 성질을 가짐에도 불구하고 확률추정지가 음수값을 가질 수 있는 단점을 내포하고 있다. 본 연구에서는 이러한 단점을 극복하기 위하여 국소최대우도 기준에 근거한 새로운 커널추정량을 제안하고, 그것의 점근적 성질을 연구하였다.
Journal of the Korean Data and Information Science Society
/
제23권4호
/
pp.765-775
/
2012
교차타당성은 커널추정량의 평활모수인 띠폭의 선택 방법으로 흔히 활용되고 있다. 연속인 확률밀도함수의 커널추정량의 띠폭 선택으로 널리 쓰이는 교차타당성 방법으로는 최대가능도교차타당성과 더불어 최소제곱교차타당성과 편의교차타당성이 있다. 확률밀도함수가 하나의 불연속점을 가질 때, Huh (2012)는 불연속점 추정을 위한 커널추정량의 띠폭 선택으로 최대가능도교차타당성을 이용한 방법을 제시하였다. 본 연구에서는 Huh (2012)에 의해 최대가능도교차타당성으로 제안된 띠폭선택의 방법과 같이 한쪽방향커널함수를 이용한 최소제곱교차타당성과 편의교차타당성으로 띠폭 선택 방법을 제시하고, 이들 띠폭 선택 방법들과 Huh (2012)의 최대가능도교차타당성을 이용한 띠폭 선택 방법을 모의실험을 통하여 비교연구 하고자 한다.
Journal of the Korean Data and Information Science Society
/
제25권1호
/
pp.87-95
/
2014
분산함수가 불연속인 경우 Kang과 Huh (2006)는 잔차제곱을 이용한 Nadaraya-Watson 추정량으로 분산함수를 추정하였다. 음의 실수 값도 가질 수 있는 로그분산함수를 추정 대상으로 하여, 오차제곱의 분포를 ${\chi}^2$-분포로 가정하고 국소선형적합을 이용한 불연속 로그분산함수의 추정이 Huh(2013)에 의해 연구되었다. Chen 등 (2009)은 연속인 로그분산함수를 로그잔차제곱을 이용한 국소선형적합으로 추정하였다. 본 연구는 Chen 등의 추정법을 이용하여 불연속인 로그분산함수의 추정량을 제시하였다. 기존의 제안된 불연속인 로그분산함수의 추정량들과 제안된 추정량을 모의실험을 통하여 비교연구하고자 한다. 한편, 로그분산함수가 연속이지만 그 미분된 함수가 불연속일 경우, Huh (2013)의 방법과 제안된 방법으로 적합된 국소선형의 기울기를 이용하여 불연속인 미분된 로그 분산함수의 추정량을 제시하고자 한다. 이들 추정량의 비교 연구 또한 모의실험을 통하여 제시하고자 한다.
공학문제에서 많은 확률 변수들은 상관성을 가지고 있고, 입력변수의 상관성은 기계시스템의 통계적 성능 분석 결과에 큰 영향을 미친다. 하지만, 상관 변수들은 결합분포함수를 모델링하기 어렵다는 이유로 종종 독립변수로 취급되거나 특정한 모수적 모델로 표현되는 경우가 많으며, 특히 데이터가 적은 경우 결합분포함수를 정확히 모델링하는데 더 큰 어려움이 있다. 본 연구에서 개발된 경계데이터를 이용한 다변량 커널밀도추정은 비선형성을 갖는 다양한 형태의 다변량 확률 분포 추정을 위해 개발되었다. 다변량 커널밀도추정은 주어진 데이터와 균등분포함수의 파라미터의 신뢰구간으로부터 생성된 경계데이터를 결합하여 데이터의 질과 수에 덜 민감하다. 따라서 제안된 방법은 보수적인 통계모델링과 신뢰성 해석 결과를 도출할 수 있으며, 통계시뮬레이션과 공학예제를 통해 그 성능을 검증하였다.
Journal of the Korean Data and Information Science Society
/
제9권2호
/
pp.179-188
/
1998
커널형 회귀함수의 추정법 중에서 국소 다항회귀 추정법이 가장 우수한 것으로 알려져 있다. 국소다항회귀 추정법에서도 다른 종류의 커널추정량과 마찬가지로 평활량이 중요한 역할을 한다. 특히 회귀함수가 복잡한 구조를 가질 때 변수평활량(variable band-width)을 사용하는 것이 타당할 것이다. 본 연구에서는 완전자료기저(fully automatic, fully data-driven) 변수평활량 선택법을 제안한다. 이 선택법은 편향과 분산의 예비추정에 필요한 평활량을 교차타당성 방법으로 선택하여 MSE를 추정하고 그 값을 최소화하는 평활량을 택하는 것이다. 제안된 방법의 우수성을 모의실험을 통하여 확인하였다. 그리고 제안된 방법은 자료점이 성긴(sparse)부분에서 생길 수 있는 문제점 즉 X'X의 비정칙성(non-singularity)을 해결할 수 있는 방법이라는 데에도 큰 의미가 있다.
분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.