• Title/Summary/Keyword: 커널기법

Search Result 349, Processing Time 0.029 seconds

Convergence performance comparison using combination of ML-SVM, PCA, VBM and GMM for detection of AD (알츠하이머 병의 검출을 위한 ML-SVM, PCA, VBM, GMM을 결합한 융합적 성능 비교)

  • Alam, Saurar;Kwon, Goo-Rak
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.1-7
    • /
    • 2016
  • Structural MRI(sMRI) imaging is used to extract morphometric features after Grey Matter (GM), White Matter (WM) for several univariate and multivariate method, and Cerebro-spinal Fluid (CSF) segmentation. A new approach is applied for the diagnosis of very mild to mild AD. We propose the classification method of Alzheimer disease patients from normal controls by combining morphometric features and Gaussian Mixture Models parameters along with MMSE (Mini Mental State Examination) score. The combined features are fed into Multi-kernel SVM classifier after getting rid of curse of dimensionality using principal component analysis. The experimenral results of the proposed diagnosis method yield up to 96% stratification accuracy with Multi-kernel SVM along with high sensitivity and specificity above 90%.

Dynamic Scheduling of Network Processes for Multi-Core Systems (멀티 코어 시스템에서 통신 프로세스의 동적 스케줄링)

  • Jang, Hye-Churn;Jin, Hyun-Wook;Kim, Hag-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.968-972
    • /
    • 2009
  • The multi-core processors are being widely exploited by many high-end systems. With significant advances in processor architecture, the network band-width required on the high-end systems is increasing drastically. It is therefore highly desirable to manage multiple cores efficiently to achieve high network band-width with minimum resource requirements. Modern operating systems, however, still have significant design and optimization space to leverage the network performance over multi-core systems. In this paper, we suggest a novel networking process scheduling scheme, which decides the best processor affinity of networking processes based on the processor cache layout, communication intensiveness, and processor loads. The experimental results show that the scheduling scheme implemented in the Linux kernel can improve the network bandwidth and the effectiveness of processor utilization by 20% and 59%, respectively.

Mixed effects least squares support vector machine for survival data analysis (생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계)

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.739-748
    • /
    • 2012
  • In this paper we propose a mixed effects least squares support vector machine (LS-SVM) for the censored data which are observed from different groups. We use weights by which the randomly right censoring is taken into account in the nonlinear regression. The weights are formed with Kaplan-Meier estimates of censoring distribution. In the proposed model a random effects term representing inter-group variation is included. Furthermore generalized cross validation function is proposed for the selection of the optimal values of hyper-parameters. Experimental results are then presented which indicate the performance of the proposed LS-SVM by comparing with a standard LS-SVM for the censored data.

Optimizing LRU Lock Management in the Linux Kernel for Improving Parallel Write Throughout in Many-Core CPU Systems (매니코어 CPU 시스템의 병렬 쓰기 성능 향상을 위한 리눅스 커널의 LRU 관리 최적화 기법)

  • Eun-Kyu Byun;Gibeom Gu;Kwang-Jin Oh;Jiwoo Bang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.7
    • /
    • pp.209-216
    • /
    • 2023
  • Modern HPC systems are equipped with many-core CPUs with dozens of cores. When performing parallel I/O in such a system, there is a limit to scalability due to the problem of the LRU lock management policy of the Linux system. The study proposes an improved FinerLRU to solve this problem. Our new FinerLRU improves the parallel write performance of file systems using the buffer cache through granular lock management by increasing the number of LRU locks upto the maximum number of cores. The proposed method was implemented in Linux 5.18.11, and the performance was measured on two types of CPUs, Intel Icelake Xeon and Intel Knights landing, with different characteristics, and it was found that a performance improvement of about two times can be obtained in both types of systems.

Kernel-Based Video Frame Interpolation Techniques Using Feature Map Differencing (특성맵 차분을 활용한 커널 기반 비디오 프레임 보간 기법)

  • Dong-Hyeok Seo;Min-Seong Ko;Seung-Hak Lee;Jong-Hyuk Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2024
  • Video frame interpolation is an important technique used in the field of video and media, as it increases the continuity of motion and enables smooth playback of videos. In the study of video frame interpolation using deep learning, Kernel Based Method captures local changes well, but has limitations in handling global changes. In this paper, we propose a new U-Net structure that applies feature map differentiation and two directions to focus on capturing major changes to generate intermediate frames more accurately while reducing the number of parameters. Experimental results show that the proposed structure outperforms the existing model by up to 0.3 in PSNR with about 61% fewer parameters on common datasets such as Vimeo, Middle-burry, and a new YouTube dataset. Code is available at https://github.com/Go-MinSeong/SF-AdaCoF.

The Validity Test of Statistical Matching Simulation Using the Data of Korea Venture Firms and Korea Innovation Survey (벤처기업정밀실태조사와 한국기업혁신조사 데이터를 활용한 통계적 매칭의 타당성 검증)

  • An, Kyungmin;Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.245-271
    • /
    • 2023
  • The change to the data economy requires a new analysis beyond ordinary research in the management field. Data matching refers to a technique or processing method that combines data sets collected from different samples with the same population. In this study, statistical matching was performed using random hotdeck and Mahalanobis distance functions using 2020 Survey of Korea Venture Firms and 2020 Korea Innovation Survey datas. Among the variables used for statistical matching simulation, the industry and the number of workers were set to be completely consistent, and region, business power, listed market, and sales were set as common variables. Simulation verification was confirmed by mean test and kernel density. As a result of the analysis, it was confirmed that statistical matching was appropriate because there was a difference in the average test, but a similar pattern was shown in the kernel density. This result attempted to expand the spectrum of the research method by experimenting with a data matching research methodology that has not been sufficiently attempted in the management field, and suggests implications in terms of data utilization and diversity.

Multi-thresholds Selection Based on Plane Curves (평면 곡선에 기반한 다중 임계값 결정)

  • Duan, Na;Seo, Suk-T.;Park, Hye-G.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.279-284
    • /
    • 2010
  • The plane curve approach which was proposed by Boukharouba et. al. is a multi-threshold selection method through searching peak-valley based on histogram cumulative distribution function. However the method is required to select parameters to compose plane curve, and the shape of plane curve is affected according to parameters. Therefore detection of peak-valley is effected by parameters. In this paper, we propose an entropy maximizing-based method to select optimal plane curve parameters, and propose a multi-thresholding method based on the selected parameters. The effectiveness of the proposed method is demonstrated by multi-thresholding experiments on various images and comparison with other conventional thresholding methods based on histogram.

Active Video Watermarking Technique for Infectious Information Hiding System (전염성 정보은닉 시스템을 위한 능동형 비디오 워터마킹 기법)

  • Jang, Bong-Joo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.1017-1030
    • /
    • 2012
  • Most watermarking schemes for video contents protection have been studied to increase watermark's robustness and invisibility against such compressions and many kinds of signal processing after embedding copyright information to the original contents. This paper proposes an active watermarking that infect watermark to contents in the video decoding process using embedded infectious watermark and control signals from a video encoder side. To achieve this algorithm, we design a kernel based watermarking in video encoder side that is possible to recover the original contents and watermark in watermark detection procedure perfectly. And then, by reversible de-watermarking in video decoder side, we design the active watermark infection method using detected watermark and control signal. This means that our system can provide secure re-distributions of video contents without any quality degration and watermark bit error against transcoding or re-encoding processing. By experimental results, we confirmed that the embedded watermark was infected by video contents and codec perfectly without any declines of compression ratio and video quality.

Support Vector Learning for Abnormality Detection Problems (비정상 상태 탐지 문제를 위한 서포트벡터 학습)

  • Park, Joo-Young;Leem, Chae-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.266-274
    • /
    • 2003
  • This paper considers an incremental support vector learning for the abnormality detection problems. One of the most well-known support vector learning methods for abnormality detection is the so-called SVDD(support vector data description), which seeks the strategy of utilizing balls defined on the kernel feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this paper is to modify the SVDD into the direction of utilizing the relation between the optimal solution and incrementally given training data. After a thorough review about the original SVDD method, this paper establishes an incremental method for finding the optimal solution based on certain observations on the Lagrange dual problems. The applicability of the presented incremental method is illustrated via a design example.

Malicious Code Detection using the Effective Preprocessing Method Based on Native API (Native API 의 효과적인 전처리 방법을 이용한 악성 코드 탐지 방법에 관한 연구)

  • Bae, Seong-Jae;Cho, Jae-Ik;Shon, Tae-Shik;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.785-796
    • /
    • 2012
  • In this paper, we propose an effective Behavior-based detection technique using the frequency of system calls to detect malicious code, when the number of training data is fewer than the number of properties on system calls. In this study, we collect the Native APIs which are Windows kernel data generated by running program code. Then we adopt the normalized freqeuncy of Native APIs as the basic properties. In addition, the basic properties are transformed to new properties by GLDA(Generalized Linear Discriminant Analysis) that is an effective method to discriminate between malicious code and normal code, although the number of training data is fewer than the number of properties. To detect the malicious code, kNN(k-Nearest Neighbor) classification, one of the bayesian classification technique, was used in this paper. We compared the proposed detection method with the other methods on collected Native APIs to verify efficiency of proposed method. It is presented that proposed detection method has a lower false positive rate than other methods on the threshold value when detection rate is 100%.