• Title/Summary/Keyword: 캠버 효과

Search Result 12, Processing Time 0.022 seconds

Design of Two-dimensional WIG Craft Airfoil at Cruise Condition (WIG선의 순항 조건에 적합한 2차원 에어포일 형상 설계)

  • Choe, Yeong-Won;Lee, Chang-Su;Kim, Jong-Am
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.117-120
    • /
    • 2012
  • 20인승 급 소형 위그선의 운항조건을 고려하여 순항 시 WIG선의 양항비를 최대로 할 수 있는 에어포일 형상 설계 기초연구를 수행하였다. WIG선의 순항 받음각 하에서 NACA 4 digit 에어포일의 최대 캠버 위치, 최대 캠버, 두께를 변화 시켜가며 수치해석을 수행하였다. 그 결과 최대캠버 8 미만에서 두께가 두껍고 최대캠버가 클수록 양항비가 높게 나타나는 경향을 확인할 수 있었으며, NACA6412 에어포일이 전반적으로 가장 우수한 양항비를 나타내었다.

  • PDF

Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material (스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성)

  • Kim, Dae-Kwan;Kim, Hong-Il;Kwon, Ki-Jung;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.390-396
    • /
    • 2007
  • In the present study, we have developed a flapping wing using a smart material to mimic the nature's flyers, birds. The wing consists of composite frames, a flexible PVC film and a surface actuator, and the main wing motions are flapping, twisting and camber motions. To change the camber, a Macro-Fiber Composite(MFC) is used as the surface actuator, and it's structural response is analyzed by the use of piezoelectric-thermal analogy. To measure the lift and thrust simultaneously, a test stand consisting of two load cells is manufactured. Some aerodynamic tests are performed for the wing in a subsonic wind tunnel to evaluate the dynamic characteristics. Experimental results show that the main lift is mostly affected by the forward velocity and the pitch angle, but the thrust is mostly affected by the flapping frequency. The effect of the camber generated by the MFC actuator can produce the sufficient lift increment of up to 24.4% in static condition and 20.8% in dynamic condition.

A Study on the Shapes of Twin Curvy Sail for Unmanned Sail Drone (무인세일드론의 트윈커브세일 형상에 관한 연구)

  • Ryu, In-Ho;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1059-1066
    • /
    • 2021
  • In Korea, the importance of marine activities is great, and automatic weather observation facilities are operating on land to investigate abnormal weather phenomena caused by industrialization; however, the number of facilities at sea is insufficient. Marine survey ships are operated to establish marine safety information, but there are many places where marine survey ships are difficult to access and operating costs are high. Therefore, a small, unmanned vessel capable of marine surveys must be developed. The sail has a significant impact on the sailing performance, so much research has been conducted. In this study, the camber effect, which is a design variable of the twin curvy sail known to have higher aerodynamic performance than existing airfoil shapes, was investigated. Flow analysis results for five cases with different camber sizes show that the lift coefficient is highest when the camber size is 9%. Curvy twin sails had the highest lift coefficient at an angle of attack of 23° because of the interaction of the port and starboard sails. The port sail had the highest lift coef icient at an angle of attack of 20°, and the starboard sail had the lowest lift coef icient at an angle of attack of 15°. In addition, the curvy twin sail had a higher lift coefficient than NACA 0018 at all angles of attack.

A Study on Structural Safety Evaluation of Improved PSC Beam Bridges Considering To-Box Reinforcement Effect (박스형 보강효과를 고려한 개선된 PSC Beam교의 구조 안전성 평가에 관한 연구)

  • Han, Sung Ho;Shin, Jae Chul;Bang, Myung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.197-211
    • /
    • 2007
  • The deteriorated PSC Beam bridge is necessary improved reinforcement method. In the study, it is proposed the box reinforcing method which could make the stiffness of the PSC Beam bridges increase more stably through the secondary composition effect of open type PSC Beam bridge's girder which is converted into the consolidation box type and the half panel is formed between the lower flange of the PSC Beam about the deteriorated PSC Beam bridge suffering the capacity decline. In case the proposed reinforcement method combine with the existed external prestressed method, the close analysis depending on the time is conducted by the construction stage because of searching the effect of reinforcement quantitatively. The reinforcement method of the box type which is proposed an efficiency improvement in objective in application case, by a reinforcement method after proposing the whole and bend sectional reinforcement method, against a each reinforcement method evaluated the upward camber which it follows in secondary composite effect and a member stress characteristics. Also, the structural safety of PSC Beam bridge is evaluated quantitatively by examining of rating factor through load carrying capacity evaluation.

Reduction Effect of Moment of Steel Composite Bridge according to Camber Control in Middle Support (중간지점부의 캠버 조정에 따른 강합성교의 모멘트저감 효과)

  • Kim, Kyoung-Nam;Lee, Seong-Haeng;Hahm, Hyung-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.634-643
    • /
    • 2010
  • In this study, both an experimental test and a time history analysis with 3D modeling were performed to verify the structural analysis model in a 2-span two girder bridge of high speed railway, which was under constructed according to the ballast load of track structure. In the basis of the structural analysis model, the analysis of construction step was carried out to investigate the reduction effect of moment in middle support of the bridge which has initial prestressing force according to camber control. The initial prestressing force of proper level was calculated, and then the reduction of moment for economical bridge section was studied. Finally, a bridge analysis method was presented for an economical and efficient design in steel composite bridge.

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles (날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향)

  • Yoon, Sang-Hoon;Cho, Haeseong;Shin, Sang-Joon;Huh, Seokhaeng;Koo, Jeehoon;Ryu, Jaekwan;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.185-195
    • /
    • 2021
  • The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.

Wind Tunnel Test for Scaled Wind Turbine Model (Scale effect correction) (풍력터빈 축소모델 풍동시험 : 축소효과 보상기법)

  • Cho, Tae-Hwan;Kim, Yang-Won;Park, Young-Min;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.282-285
    • /
    • 2008
  • NREL Phase VI 12% 축소모델을 사용한 표준풍력터빈 풍동시험은 2006$\sim$2007년에 수행되었다. 1,2차 풍동시험은 복합재 및 알루미늄 블레이드를 사용하여 블레이드 제작정밀도 및 표면상태에 의한 영향을 파악하기 위해 수행되었다. 3차 풍동시험은 축소효과보상기법 개발을 위해 수행되었다. Bo-105 40% 모델에 사용된 코드확장기법을 적용하여 15% 코드확장 블레이드를 사용하여 풍동시험을 수행하였다. 시험결과 코드확장기법을 적용할 경우 풍속에 대한 토크 기울기는 실물모델과 잘 일치하나, 최대토크 대비 8%정도 간극을 나타내고 있다. 풍력터빈 블레이드와 같이 캠버가 큰 익형을 사용하는 회전체에 대한 수정된 보상기법을 적용할 경우 이러한 간극은 보상될 수 있다.

  • PDF

A Study of Camber Effect on Contact Pressure Between Cam and Roller (캠-롤러 접촉압력에 대한 Camber효과에 관한 연구)

  • Chon, Seo-Hyeon;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.56-60
    • /
    • 2010
  • Contact pressure occurs whenever two surfaces contact between cam and roller. Especially excessive pressure peaks occur at the ends of the contact region. Such as scuffing or pitting will be induced when these operating conditions continuously occur on the surface. Camber effect is given to reduce damage by changing the shape of roller. The objective of this paper is to calculate contact pressure distribution by using a contact analysis considering camber and tilting angle. These results predict that camber effect of all machine components have influence on contact pressure distribution.

Flexural Behavior of Concrete Beams Reinforced with Fe based Shape Memory Alloy Bar (철계-형상기억합금 바로 제작된 콘크리트 보의 휨 거동)

  • Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2020
  • This paper reports an experimental study to evaluate the flexural behavior of concrete beams reinforced using Fe based shape memory alloy (Fe-SMA) bars. For the experiment, a concrete beam of 200mm×300mm×2,200mm was produced, and a 4% pre-strained Fe-SMA bar was used as a tensile reinforcement. As experimental variables, type of tensile reinforcement (SD400, Fe-SMA), reinforcement ratio (0.2, 0.39, 0.59, 0.78), activation of Fe-SMA (activation, non-activation), and joint method of Fe-SMA bar (Continuous, welding, coupler) were considered. The electric resistance heating method was used to activate the Fe-SMA bar, and a current of 5A/㎟ was supplied until the specimen reached 160℃. After the upward displacement of the specimen due to the camber effect was stabilized, a three-point flexural loading experiment was performed using an actuator of 2,000 kN capacity. As a result of the experiment, it was found that the upward displacement occurred due to the camber effect as the Fe-SMA bar was activated. The specimen that activated the Fe-SMA bar had an initial crack at a higher load than the specimen that did not activate it. However, as with general prestressed concrete, the effect of the prestress by Fe-SMA activation on the ultimate state of the beam was insignificant.

Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration (복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성)

  • Yu, Young-Bok;Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.9-17
    • /
    • 2005
  • The wake patterns and thrust characteristics of dual flapping airfoils in a biplane configuration are investigated using an unsteady panel method. To trace complicated wake shapes behind airfoils, a core addition scheme, a vortex core model, and the fourth order Runge-Kutta convection scheme are employed. Present results are verified by comparing them with flow visualization, exact solution and published computed results. The thickness and camber of thick airfoils has an effect of decreasing thrust. The airfoils produce maximum thrust when the phase angles between plunging and pitching motions are both 90 and 120 degrees. Thrust increases as the plunge velocity is increased, which is also found as the pitch amplitude is stepped up. Thrust decreases when the distance between the airfoils is less than 0.6c.