• Title/Summary/Keyword: 캘리브레이션

Search Result 267, Processing Time 0.031 seconds

Estimation of the Fundamental Matrix using a Non-linear Minimization Technique and Its Accuracy Analysis (비선형 최소화에 의한 F행렬 추정 및 정확도 분석)

  • Eom, Seong-Hun;Lee, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.657-664
    • /
    • 2001
  • It is possible to extract a 3D models from its multiple views using the self-calibration. Though it is possible to construct 3D models of objects from their multiple views, accuracy of 3D models depends on the fundamental matrix estimated between two views. In this paper, we show the fundamental matrix accuracy can be improved by taking a non-linear minimization technique. Furthermore, the corresponding points which are completely mismatches or have greater discrepancy errors in their locations, reduce the fundamental matrix accuracy. Thus, applying the Monte Carlo technique and the non-linear minimization Levenberg-Marquardt method to remove the outliers, we can estimate the fundamental matrix with the higher accuracy.

  • PDF

Wafer Position Recognition System of Cleaning Equipment (웨이퍼 클리닝 장비의 웨이퍼 장착 위치 인식 시스템)

  • Lee, Jung-Woo;Lee, Byung-Gook;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.400-409
    • /
    • 2010
  • This paper presents a position error recognition system when the wafer is mounted in cleaning equipment among the wafer manufacturing processes. The proposed system is to enhance the performance in cost and reliability by preventing the wafer cleaning system from damaging by alerting it when it is put in correct position. The key algorithms are the calibration method between image acquired from camera and physical wafer, a infrared lighting and the design of the filter, and the extraction of wafer boundary and the position error recognition resulting from generation of circle based on least square method. The system is to install in-line process using high reliable and high accurate position recognition. The experimental results show that the performance is good in detecting errors within tolerance.

Development of Calibration Jet System for Calibrating a Flow Sensor (유동센서 보정용 캘리브레이션 제트 시스템 개발)

  • Chang, J.W.;Byun, Y.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2003
  • A calibration jet system using separate blower is developed to calibrate a flow sensor effectively. Designed open circuit type mini calibration jet system, which has the dimension of $0.5m(W){\times}1.17m(H)$ is small compared with conventional calibration jet systems. The exit of nozzle has exchangeable contractions with a cross section area of $38.5cm^2$ , and a cross section area of $113.1cm^2$, respectively. The ranges of wind speed at exit of exchangeable nozzles are $7.5{\sim}42\;m/s$ and $1.8{\sim}16.5\;m/s$, respectively. The input power for the high pressure blower is 1.18kW. The turning vanes for corner was rolled flat plate parallel to the flow direction. The flow conditioning screen was located immediately downstream of the wide-angle diffuser. The honeycomb and two flow conditioning screens were located in the stagnation chamber. From the economical point of view and the simplicity of the calibration jet system set up and handling, it can be said that the developed calibration jet system is an effective calibration jet system. This system can also be used to calibrate the flow sensor with high resolution.

  • PDF

Volume Calculation Using Stereo Camera and Non-uniform Mesh (스테레오 카메라와 비균일 메시를 이용한 체적 계산 알고리즘)

  • Lee, Young-Dae;Cho, Sung-Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.429-432
    • /
    • 2012
  • In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. After camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the two volume calculation algorithms based on the triangularmeshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

  • PDF

Study on Robot Calibration Using Multi-measurement Coordinate System (다중 측정 좌표계를 이용한 로봇 캘리브레이션 방법 연구)

  • Lim, Saeng-Ki;Kim, Jung-Tae;Borm, Jin-Hwan;Choi, Jae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.164-173
    • /
    • 1999
  • Robot calibration needs accurate measurements of robot end-effector position at a number of different robot configurations. One of the efficient ways of the measurement is "Touching on Jig" method suggested in [7], which utilizes a touch sensor and a fixture consisting of various sizes of blocks. By moving the end-effector to touch the surface of a block whose position relative to the other is known, the end-effector position relative to the fixture coordinate system can be obtained at the instant of touching. However, the global size of fixture is too small to cover the various configurations of the robot. Because of the manufacturing difficulties, the fixture cannot be manufactured large enough for well distributed position measurement. It results in the improvement of robot accuracy only in the limited space near to the fixture rather than over the whole space of the robot working volume. The paper proposes a method to resolve the above problem by measuring the end-effector positions with respect to several different coordinate system using the same measurement devices. It is found that the proposed method leads the improvements of robot position accuracy over the large space of working volume. The experimental studies are performed to show the validity of the method and their results are discussed.

  • PDF

Robust Semi-auto Calibration Method for Various Cameras and Illumination Changes (다양한 카메라와 조명의 변화에 강건한 반자동 카메라 캘리브레이션 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Recently, many 3D contents have been produced through the multiview camera system. In this system, since a difference of the viewpoint between color and depth cameras is inevitable, the camera parameter plays the important role to adjust the viewpoint as a preprocessing step. The conventional camera calibration method is inconvenient to users since we need to choose pattern features manually after capturing a planar chessboard with various poses. Therefore, we propose a semi-auto camera calibration method using a circular sampling and an homography estimation. Firstly, The proposed method extracts the candidates of the pattern features from the images by FAST corner detector. Next, we reduce the amount of the candidates by the circular sampling and obtain the complete point cloud by the homography estimation. Lastly, we compute the accurate position having the sub-pixel accuracy of the pattern features by the approximation of the hyper parabola surface. We investigated which factor affects the result of the pattern feature detection at each step. Compared to the conventional method, we found the proposed method released the inconvenience of the manual operation but maintained the accuracy of the camera parameters.

An Image Warping Method for Implementation of an Embedded Lens Distortion Correction Algorithm (내장형 렌즈 왜곡 보정 알고리즘 구현을 위한 이미지 워핑 방법)

  • Yu, Won-Pil;Chung, Yun-Koo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.373-380
    • /
    • 2003
  • Most of low cost digital cameras reveal relatively high lens distortion. The purpose of this research is to compensate the degradation of image quality due to the geometrical distortion of a lens system. The proposed method consists of two stages : calculation of a lens distortion coefficient by a simplified version of Tsai´s camera calibration and subsequent image warping of the original distorted image to remove geometrical distortion based on the calculated lens distortion coefficient. In the lens distortion coefficient calculation stage, a practical method for handling scale factor ratio and image center is proposed, after which its feasibility is shown by measuring the performance of distortion correction using a quantitative image quality measure. On the other hand, in order to apply image warping via inverse spatial mapping using the result of the lens distortion coefficient calculation stage, a cubic polynomial derived from an adopted radial distortion lens model must be solved. In this paper, for the purpose of real-time operation, which is essential for embedding into an information device, an approximated solution to the cubic polynomial is proposed in the form of a solution to a quadratic equation. In the experiment, potential for real-time implementation and equivalence in performance as compared with that from cubic polynomial solution are shown.

Accuracy Analysis of Low-cost UAV Photogrammetry for Corridor Mapping (선형 대상지에 대한 저가의 무인항공기 사진측량 정확도 평가)

  • Oh, Jae Hong;Jang, Yeong Jae;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.565-572
    • /
    • 2018
  • Recently, UAVs (Unmanned Aerial Vehicles) or drones have gained popularity for the engineering surveying and mapping because they enable the rapid data acquisition and processing as well as their operation cost is low. The applicable fields become much wider including the topographic monitoring, agriculture, and forestry. It is reported that the high geospatial accuracy is achievable with the drone photogrammetry for many applications. However most studies reported the best achievable mapping results using well-distributed ground control points though some studies investigated the impact of control points on the accuracy. In this study, we focused on the drone mapping of corridors such as roads and pipelines. The distribution and the number of control points along the corridor were diversified for the accuracy assessment. In addition, the effects of the camera self-calibration and the number of the image strips were also studied. The experimental results showed that the biased distribution of ground control points has more negative impact on the accuracy compared to the density of points. The prior camera calibration was favored than the on-the-fly self-calibration that may produce poor positional accuracy for the case of less or biased control points. In addition, increasing the number of strips along the corridor was not helpful to increase the positional accuracy.

Characterization of HP ScanJet 7450C Scanner (HP ScanJet 7450C 스캐너의 색특성 분석)

  • 박진희;김홍석;박승옥
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.84-85
    • /
    • 2002
  • 웹을 통해 보여지는 대부분의 이미지는 스캐너와 같은 입력 장치에 의해 이뤄진다. 그러나 모니터로 보여지는 이미지의 색과 실제 색의 차이로 인한 문제가 나타나면서 색보정에 대한 관심이 증대되고 있다. 디지털 환경에서의 색상 차이는 같은 이미지라도 디지털 장치에서 입력되고 출력되는 값이 비 선형적이기 때문에 나타난다. 이에 본 연구는 스캐너에서 출력되는 디지털 값으로부터 실제색의 삼자극치를 예측하여 이를sRGB 규격으로 캘리브레이션 된 모니터로 정확하게 재현시키는 기술을 연구하였다. (중략)

  • PDF