• Title/Summary/Keyword: 캐비티 필터

Search Result 15, Processing Time 0.033 seconds

Signal Cancellation Characteristics of Cavity Delay Filter Module for LPA (LPA용 캐비티 지연 필터 모듈의 신호 상쇄 특성 연구)

  • 권영만;이기희;선태원;구경원
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.243-246
    • /
    • 2001
  • A cavity delay filter module for IMT-2000 LPA has been developed with 0.9dB insertion loss, 0.1dB/0.6$^{\circ}$ gain/phase flatness. Broadband signal cancellation of the module has been simulated using the measured S parameter, and gain, phase and group delay have been matched to satisfy the signal cancellation of the module. In the experiment, the value of designed parameters are used and 40dB signal cancellation has been obtained over 100MHz bandwidth. Also the sampling cancellation has been shown to be the similar performance of the feedforward output cancellation.

  • PDF

Color Filter Utilizing a Thin Film Etalon (박막형 에탈론 기반의 투과형 컬러필터)

  • Yoon, Yeo-Taek;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.175-178
    • /
    • 2010
  • A transmission type color filter based on a thin film Ag-$SiO_2$-Ag etalon was proposed and realized in a quartz substrate. The device could acquire infrared suppressed transmission and wide effective area compared to costly e-beam lithography and laser interference lithography. The FDTD method was introduced to take into account the effect of the dispersion characteristics of the silver metal and the thickness thereof. Three different color filters were devised: The cavity length for the red, green and blue filters were 160 nm, 130 nm, and 100 nm respectively, with the metal layer unchanged at 25 nm. The observed center wavelengths were measured at 650 nm, 555 nm, and 480 nm for the red, green, and blue devices; the corresponding bandwidths were about 120 nm, 100 nm, and 120 nm; and the peak transmission for all was ~60%. Finally the relative transmission was measured to decline with the angle of the incident beam with the rate of 1%/degree.

FPI Array-Based Infrared Micro-Spectrometer for Multi-Gases Detection (다중가스 검출을 위한 FPI 어레이 기반 적외선 마이크로스펙트로미터)

  • Kang, Hyun-Oh;Zhiguo, Zhao;Lee, June-Kyoo;Jung, Ho;Kim, Hak-Rin;Kong, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1547_1548
    • /
    • 2009
  • 제안된 Fabry-Perot Interferometer (FPI) 어레이 기반 IR 스펙트로미터는 상층부에 FPI 어레이와 하단에 $V_2O_5$ 볼로미터 IR 적외선 센서어레이로 크게 두 부분으로 구성된다. 이 구조에서 다양한 FPI 공진 캐비티의 두께에 의해 특정 공진 파장이 선택되어 진다. 그리고 각각의 볼로미터 IR 디텍터는 IR 파장에 상응하는 투과도를 감지해낸다. 다양한 박막 필터 시뮬레이션 결과를 통해 제작된 FPI 어레이 기반 IR 스펙트로미터는 $3{\sim}5{\mu}m$의 적외선 파장대역에서 흡수 스펙트럼을 가지는 $CH_4$, $CO_2$, $N_2O$, CO 가스 검출을 위해 다층 박막 FPI 층의 다층 박막 FPI 층의 투과율을 높였다.

  • PDF

Millimeter-wave LTCC Front-end Module for Highly Integrated Transceiver (고집적 송수신기를 위한 밀리미터파 LTCC Front-end 모듈)

  • Kim, Bong-Su;Byun, Woo-Jin;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.967-975
    • /
    • 2006
  • In this paper, design and implementation of a very compact and cost effective front-end module are presented for IEEE 802.16 FWA(fixed Wireless Access) in the 40 GHz band. A multi-layer LTCC(Low Temperature Co-fred Ceramic) technology with cavity process to achieve excellent electrical performances is used to fabricate the front-end module. The wirebond matching circuit design of switch input/output port and waveguide transition to connect antenna are optimally designed to keep transmission loss low. To reduce the size of the front-end module, the dielectric waveguide filter is developed instead of the metal waveguide filter. The LTCC is composed of 6 layers(with the thickness of a layer of 100 um) having a relative dielectric constant of 7.1. The front-end module is implemented in a volume of $30{\times}7{\times}0.8mm^3$ and shows an overall insertion loss < 5.3 dB, and image rejection value > 49 dB.

Broadband LTCC Receiver Module for Fixed Communication in 40 GHz Band (40 GHz 대역 고정통신용 광대역 LTCC 수신기 모듈)

  • Kim Bong-Su;Kim Kwang-Seon;Eun Ki-Chan;Byun Woo-Jin;Song Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1050-1058
    • /
    • 2005
  • This paper presents how to design and implement a very compact, cost effective and broad band receiver module for IEEE 802.16 FWA(Fixed Wireless Access) in the 40 GHz band. The presented receiver module is fabricated in a multi-layer LTCC(Low Temperature Cofired Ceramic) technology with cavity process to achieve excellent electrical performances. The receiver consists of two MMICs, low noise amplifier and sub-harmonic mixer, an embedded image rejection filter and an IF amplifier. CB-CPW, stripline, several bond wires and various transitions to connect each element are optimally designed to keep transmission loss low and module compact in size. The LTCC is composed of 6 layers of Dupont DP-943 with relative permittivity of 7.1. The thickness of each layer is 100 um. The implemented module is $20{\times}7.5{\times}1.5\;mm^3$ in size and shows an overall noise figure of 4.8 dB, an overall down conversion gain of 19.83 dB, input P1 dB of -22.8 dBm and image rejection value of 36.6 dBc. Furthermore, experimental results demonstrate that the receiver module is suitable for detection of Digital TV signal transmitted after up-conversion of $560\~590\;MHz$ band to 40 GHz.