• Title/Summary/Keyword: 캐비터

Search Result 4, Processing Time 0.015 seconds

Analysis of Flow Characteristics of Supercavitating Cascade (수퍼캐비테이션 익열의 유동특성 해석)

  • 이명호;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.803-810
    • /
    • 1992
  • With increases in the rotational speed of hydraulic machine, studies on the hydrodynamic characteristics of supercavitating cascade are important on the view of flow analysis and design of fluid machinery. In the present paper, the complex functions of nonlinear theory corresponding to the flow of supercavitating cascade can be obtained by distributing singulary singulary points such as sources, vortexes and doublets on hydrofoil and free streamline. The numerical calculations on the closed wake model and semi-closed wake model are carried out in order to show the flow characteristics around the supecavitating cascade with finite with finite cavity length. As the result of this study, the flow characteristics such as lift, drag and cavitation coefficients are predicted by the flow conditions of supercavitating cascade in the fluid machinery.

Frontal Flow Field Construction for Wall Boundary Condition Treatment and Frontal Remeshing Using Spline Curve in Injection Molding Simulation (사술성형 모사에 있어서 벽면 경계조건 처리를 위한 선단 유동장 생성기법과 spline 곡선을 이용한 선단 격자 재구성)

  • 윤재륜
    • The Korean Journal of Rheology
    • /
    • v.5 no.1
    • /
    • pp.34-48
    • /
    • 1993
  • 최근 CAD/CAM의 발전과 더불어 사출성형공정은 여러분야에 폭넓게 응용되고 있 다. 사출성형공정은 크게 충전과정(filling stage), 냉각과정(cooling stage), 보압과정(packing stage)로 나누어 지는데 이중 충전과정은냉각과정과 보압과정에서 나타날 물리적인 현상과 최종 성형품의 기계적 성질에 중요한 영향을 끼치게 된다. 충전과정의 수치 해석 방법은 대 표적으로 control volume method, branching flow method, transient moving boun-dary method로 구분된다. 본 연구에서는 격자의 형태를 양호하게 형성시키고 유동선단의 형태를 개선하기위한 기법인 Spline 곡선을 이용한 선단격자 재구성(frontal remeshing using spline curve)과 수치해석에 소요되는 시간을 줄이기 위하여 벽면경계조건 처리를 위한 선단 유동 장생성(frontal flow field construction for wall boun-dary condition treatment)기법을 개발 하고 transient moving voundary method에 적용시켜 원형 평판과 인장 및 굽힘시편 그리고 두께가 변하는 사각 형상을 가진 캐비터에서의 충전과정을 수치해석하였다. 그결과 압력 분 포, 온도분포, 속도장, 유동선단의 진전형태 등이 기존에 제출된 해석결과와 비교하여 볼 때 만족스러운 수치해석결과를 보였다.

  • PDF

A Study on Critical Reynolds Numbers of Two-Dimensional Closed Cavity by CFD (CFD에 의한 2차원 밀폐캐비티의 임계레이놀즈수에 관한 연구)

  • 김진구;조대환;이영호
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.122-129
    • /
    • 1997
  • Flow characteristics of two-dimensional closed square cavities near unsteady critical Reynolds numbers were studied numerically at five Reynolds numbers : 8${\times}10^3$, 8.5${\times}10^3$, 9${\times}10^3$, 9.5${\times}10^3$ and $10^4$ were investigated. A convection conservative difference scheme based upon SOLA to maintain the nearly 2nd-order spatial accuracy was adopted on irregular grid formation. Irregular grid number is 80${\times}$80 and its minimum size is about 1/400 of the cavity height(H) and its maximum is about 1/53 H. The result shows that the critical Reynolds number indicating the emergence of flow unsteadiness exists near Re=8.5${\times}10^3$ and their flow patterns reveal periodic fluctuation during transient and fully-developed stages.

  • PDF

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(II)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법(II)-캐비터 충전 문제와 슬로싱 문제에의 응용-)

  • Kim, Min-Su;Park, Jong-Seon;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1570-1579
    • /
    • 2000
  • Finite element analysis of fluid flow with moving free surface has been carried out in two and tree dimensions. The new VOF-based numerical algorithm that has been proposed by the present authors was applied to several 2-D and 3-D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools that have been newly introduced by the present authots; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2-D and 3-D cavity filling and sloshing problems, which demonstrated versatility and effectiveness of the new free surface tracking scheme as well as the overall solution procedure. The proposed numerical algorithm resolved successfully the interacting free surface with each other. The simulated results demonstrated the applicability of proposed numerical algorithm to the practical problems of large free surface motion. Also, it has been demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non-uniform grid systems and can be extended to the 3-D free surface flow problem without additional efforts.