• Title/Summary/Keyword: 캐리

Search Result 90, Processing Time 0.022 seconds

On the Implementation of the Digital Neuron Processor (디지탈 뉴런프로세서의 구현에 관한 연구)

  • 홍봉화;이지영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.2
    • /
    • pp.27-38
    • /
    • 1999
  • This paper proposes a high speed digital neuron processor which uses the residue number system, making the high speed operation possible without carry propagation,. Consisting of the MAC(Multiplier and with Accumulator) operation unit, quotient operation unit and sigmoid function operation unit, the neuron processor is designed through 0.8$\mu$m CMOS fabrication. The result shows that the new implemented neuron processor can run at the speed of 19.2 nSec and the size can be reduced to 1/2 compared to the neuron processor implemented by the real number operation unit.

  • PDF

On the Digital Implementation of the Sigmoid function (시그모이드 함수의 디지털 구현에 관한 연구)

  • 이호선;홍봉화
    • The Journal of Information Technology
    • /
    • v.4 no.3
    • /
    • pp.155-163
    • /
    • 2001
  • In this paper, we implemented sigmoid active function which make it difficult to design of the digital neuron networks. Therefore, we designed of the high speed processing of the sigmoid function in order to digital neural networks. we designed of the MAC(Multiplier and Accumulator) operation unit used residue number system without carry propagation for the high speed operation. we designed of MAC operation unit and sigmoid processing unit are proved that it could run of the high speed. On the simulation, the faster than 4.6ns on the each order, we expected that it adapted to the implementation of the high speed digital neural network.

  • PDF

Design and Implementation of Lok-up Table for Pre-scaling in Very-High Radix Divider (높은 자릿수 나눗셈 연산기에서의 영역변환상수를 위한 검색테이블 설계 및 구현)

  • 이병석;송문식;이정아
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10c
    • /
    • pp.3-5
    • /
    • 1999
  • 나눗셈 알고리즘은 다른 덧셈이나 곱셈 알고리즘에 비해 복잡하고, 수행 빈도수가 적다는 이유로 그동안 고속 나눗셈의 하드웨어 연구는 활발하지 않았다. 그러나 멀티미디어의 발전 및 고성능의 그래픽 랜더링을 위한 보다 빠른 부동소수점연산기(FPU)가 필요하게 되었으며, 이에 따라서 고속의 나눗셈 연산기의 필요성이 증가하게 되었다. 특히, 전체의 수행 시간 향상을 위해서라도 고속 나눗셈 연산기의 중용성은 더욱 부각되고 있다. 그러나 고속 나눗셈 연산기는 연산 속도와 크기라는 서로 상반되는 요소를 가지고 있다. 즉, 연산 속도가 빠르면 크기는 늘어나고, 크기를 줄이면 연산 속도는 늦어지게 된다. 본 논문은 높은 자릿수(Very-High Radix) 나눗셈 알고리즘에서 영역변환상수를 구하는 방법으로 연산이 아닌 검색테이블(Look-up Table)을 이용한다. 그리고 검색테이블의 크기를 줄이는 방법으로 영역변환상수의 범위 분석 및 캐리 저장형을 이용한 검색테이블 분할 방법을 이용하였다. 전체적으로는 영역변환상수를 구하는 연산주기가 필요없게 되므로 나눗셈 연산기의 영역 크기의 변화가 적으면서 연산 속도는 빨라졌음을 알 수 있다.

  • PDF

A Design of High Speed Floating Point Unit (고속 Floating Point Unit 설계)

  • Oh, Haeng-Soo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • Floating point unit system follows IEEE 754 Standard. In this paper, we used 1's complement system instead of 2's complement to practice the arithmetic. By converting we enable this system to compute simply and fast. To improve the speed of newly design adder, we used a transformation Carry selector adder of 53 bits. In paper, a design of floating point unit high efficiency micro processor system about for high speed. 

Design of Systolic Array for Fast RSA Modular Multiplication (고속 RSA 모듈러 곱셈을 위한 시스톨릭 어레이의 설계)

  • Kang, Min-Sup;Nam, Sung-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.809-812
    • /
    • 2002
  • 본 논문은 RSA 암호시스템에서 고속 모듈러 곱셈을 위한 최적화된 시스톨릭 어레이의 설계를 제안한다. 제안된 방법에서는 미리 계산된 가산결과를 사용하여 개선된 몽고메리 모듈러 곱셈 알고리듬을 제안하고, 고속 모듈러 곱셈을 위한 새로운 구조의 시스톨릭 어레이를 설계한다. 미리 계산된 가산결과를 얻기 위해 CLA(Carry Look-ahead Adder)를 사용하였으며, 이 가산기는 덧셈연산에 있어서 캐리전달 지연이 제거되므로 연산 속도를 향상 시킬 수 있다. 제안된 시스톨릭 구조는VHDL(VHSlC Hardware Description Language)을 사용하여 동작적 수준을 기술하였고, Ultra 10 Workstation 상에서 $Synopsys^{TM}$ 툴을 사용하여 합성 및 시뮬레이션을 수행하였다. 또한, FPGA 구현을 위하여 Altera MaxplusII를 사용하여 타이밍 시뮬레이션을 수행하였고, 실험을 통하여 제안한 방법을 효율성을 확인하였다.

  • PDF

New VLSI Architecture of Parallel Multiplier-Accumulator Based on Radix-2 Modified Booth Algorithm (Radix-2 MBA 기반 병렬 MAC의 VLSI 구조)

  • Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.94-104
    • /
    • 2008
  • In this paper, we propose a new architecture of multiplier-and-accumulator (MAC) for high speed multiplication and accumulation arithmetic. By combining multiplication with accumulation and devising a hybrid type of carry save adder (CSA), the performance was improved. Since the accumulator which has the largest delay in MAC was removed and its function was included into CSA, the overall performance becomes to be elevated. The proposed CSA tree uses 1's complement-based radix-2 modified booth algorithm (MBA) and has the modified array for the sign extension in order to increase the bit density of operands. The CSA propagates the carries by the least significant bits of the partial products and generates the least significant bits in advance for decreasing the number of the input bits of the final adder. Also, the proposed MAC accumulates the intermediate results in the type of sum and carry bits not the output of the final adder for improving the performance by optimizing the efficiency of pipeline scheme. The proposed architecture was synthesized with $250{\mu}m,\;180{\mu}m,\;130{\mu}m$ and 90nm standard CMOS library after designing it. We analyzed the results such as hardware resource, delay, and pipeline which are based on the theoretical and experimental estimation. We used Sakurai's alpha power low for the delay modeling. The proposed MAC has the superior properties to the standard design in many ways and its performance is twice as much than the previous research in the similar clock frequency.

A New Structural Carry-out Circuit in Full Adder (새로운 구조의 전가산기 캐리 출력 생성회로)

  • Kim, Young-Woon;Seo, Hae-Jun;Han, Se-Hwan;Cho, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.1-9
    • /
    • 2009
  • A full adders is an important component in applications of digital signal processors and microprocessors. Thus it is imperative to improve the power dissipation and operating speed for designing a full adder. We propose a new adder with modified version of conventional static CMOS and pass transistor logic. The carry-out generation circuit of the proposed full adder is different from the conventional XOR-XNOR structure. The output Cout of module III is generated from input A, B and Cin directly without passing through module I as in conventional structure. Thus output Cout is faster by reducing operation step. The proposed module III uses the static CMOS logic style, which results full-swing operation and good driving capability. The proposed 1bit full adder has the advantages over the conventional static CMOS, CPL, TGA, TFA, HPSC, 14T, and TSAC logic. The delay time is improved by 4.3% comparing to the best value known. PDP(power delay product) is improved by 9.8% comparing to the best value. Simulation has been carried out using a $0.18{\mu}m$ CMOS design rule for simulation purposes. The physical design has been verified using HSPICE.

A Novel Design of a Low Power Full Adder (새로운 저전력 전가산기 회로 설계)

  • Kang, Sung-Tae;Park, Seong-Hee;Cho, Kyoung-Rok;You, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.3
    • /
    • pp.40-46
    • /
    • 2001
  • In this paper, a novel low power full adder circuit comprising only 10 transistors is proposed. The circuit is based on the six -transistor CMOS XOR circuit, which generates both XOR and XNOR signals and pass transistors. This adder circuit provides a good low power characteristics due to the smaller number of transistors and the elimination of short circuit current paths. Layouts have been carried out using a 0.65 ${\mu}m$ ASIC design rule for evaluation purposes. The physical design has been evaluated using HSPICE at 25MHz to 50MHz. The proposed circuit has been used to build 2bit and 8bit ripple carry adders, which are used for evaluation of power consumption, time delay and rise and fall time. The proposed circuit shows substantially improved power consumption characteristics, about 70% lower than transmission gate full adder (TFA), and 60% lower than a design using 14 transistors (TR14). Delay and signal rise and fall time are also far shorter than other conventional designs such as TFA and TR14.

  • PDF

A Study on the Modulus Multiplier Speed-up Throughput in the RSA Cryptosystem (RSA 암호시스템의 모듈러 승산기 처리속도 향상을 위한 연구)

  • Lee, Seon-Keun;Jeung, Woo-Yeol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.217-223
    • /
    • 2009
  • Recently, the development of the various network method can generate serious social problems. So, it is highly required to control security of network. These problems related security will be developed and keep up to confront with anti-security field such as hacking, cracking. The way to preserve security from hacker or cracker without developing new cryptographic algorithm is keeping the state of anti-cryptanalysis in a prescribed time by means of extending key-length. In this paper, the proposed montgomery multiplication structured unit array method in carry generated part and variable length multiplication for eliminating bottle neck effect with the RSA cryptosystem. Therefore, this proposed montgomery multiplier enforce the real time processing and prevent outer cracking.

  • PDF

A New Small-Swing Domino Logic based on Twisted Diode Connections (트위스티드 다이오드 연결 구조를 이용한 저전압 스윙 도미노 로직)

  • Ahn, Sang-Yun;Kim, Seok-Man;Jang, Young-Jo;Cho, Kyoungrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.42-48
    • /
    • 2014
  • In this paper, we propose a new small swing domino logic that reduces the swing amplitude by using twist-connected PMOS and NMOS transistors. The output swing range of the proposed circuit is adjusted by the size of the twist-connected transistors and the load capacitance. The designed RCA with the proposed circuit technique shows reduction of the power consumption by 37% and PDP performance by 43% compared with the domino CMOS logic.