• Title/Summary/Keyword: 칼코겐화물

Search Result 17, Processing Time 0.019 seconds

Thermal Property of 2D-Disordered Tungsten Chalcogenides (2차원적으로 무질서화된 텅스텐 칼코겐화물의 열적특성에 관한 연구)

  • Kim, Jong-Young;Jang, Kyoung-Ju;Pee, Jae-Hwan;Cho, Kwang-Yeon;Choi, Soon-Mok;Seo, Won-Sun;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.132-135
    • /
    • 2010
  • Thermal properties of layered metal chalcogenides such as $WT_2$ (T=S,Se) with two-dimensionally disordered structure were evaluated. Thermal conductivity shows a marked decrease after exfoliation and subsequent restacking because of random stacking of two-dimensional crystalline sheet, which circumvents thermal conduction pathways along longitudinal direction in anisotropic materials.

Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films (Tellurium계 상변화 칼코겐화물 박막의 광투과 특성)

  • Yoon, Hoi Jin;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.408-413
    • /
    • 2016
  • The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure (자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포)

  • Yoon, Hye Ryeon;Park, Young Sam;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.448-453
    • /
    • 2019
  • This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.

Synthesis of WS2 by electrophoretic depsoition and sulfurization. (전기 영동 및 황화 처리를 이용한 WS2 합성에 관한 연구)

  • Kim, Min-Gyeong;Park, Yeong-Bae;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.167.1-167.1
    • /
    • 2017
  • 전이금속 디칼코게나이드는 서로 다른 전이 금속원소와 칼코겐 원소의 결합으로 이루어진 층상 구조의 물질이다. 그 중 텅스텐 이황화물($WS_2$)은 전이금속 화합물로써 풍부한 매장량으로 인하여 가격면에서 매우 저렴하며, 높은 온도에서도 잘 견딜 수 있는 열 내구성이 강해 물 분해 반응에서 촉매로 사용될 수 있는 가능성이 제시되었다. 이러한 $WS_2$을 매장량이 적은 고비용의 백금계 촉매를 대체하기 위한 물질로서 많은 연구가 활발히 진행되고 있다. 본 연구에서는 $WO_3$ 콜로이드 용액을 전기 영동 및 황화 처리 이용하여 $WS_2$를 합성하여 수소 발생 반응(Hydrogen Evolution Reaction, HER)촉매로서의 가능성을 확인하였다.

  • PDF

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells (고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석)

  • Kwon, Kyung-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.

Effect of Annealing Temperature on the Operation of Phase-Change Memory (상변화 메모리 소자 동작 특성에 미치는 열처리 온도 효과)

  • Lee, Seung-Yun;Park, Young-Sam
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2010
  • The effect of process temperature of a final annealing step in the fabrication of phase change memory (PCM) devices was investigated. Discrete PCM devices employing $Ge_2Sb_2Te_5$ (GST) films as an active element were made in a pore-style configuration, and they were annealed at various temperatures ranging from 160 to $300^{\circ}C$. The behaviors of cell resistance change from SET resistance to RESET resistance were totally different according to the annealing temperatures. There was a critical annealing temperature for the fabrication of normal PCM devices and abnormal operations were observed in some devices annealed at temperatures lower or higher than the critical temperature. Those influences of annealing temperature seem closely related to the thermal stability of a top electrode/GST/heating layer multilayer structure in the PCM devices.

Synthesis and Characterization of Low-Dimensional Chalcogenide Compound via a Molten Salt Method (용융염법을 이용한 저차원 구조의 금속 칼코겐 화합물의 합성 및 구조 특성연구)

  • Choi, Duc-Su;Yun, Hye-Sik;Oh, Hwa-Suk;Kim, Don;Yun, Ho-Seop;Park, Youn-Bong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.504-509
    • /
    • 2004
  • The reaction of Cu metal with mixed alkali metal polyselenide flux ($KNaSe_x$) produced large plate-like crystals of $KCu_4Se_3$. The structure of $KCu_4Se_3$, determined with X-ray single crystal diffraction techniques, is tetragonal (P4/mmm, a=4.013(1))${\AA}$, c=9.712(1))${\AA}$, z=1, R=6.7%). The structure is composed $[Cu_4Se_3]_n^{n-}$double layers which are made of fused anti PbO-type Cu2Se2 layers. Temperature variable resistivity measurement on single crystal of $KCu_4Se_3$ shows metallic behavior ranging from $1.8{\times}10^{-4}{\Omega}{\cdot}cm$ (at 300 K) to $1.0{\times}10^{-6}{\Omega}{\cdot}cm$ (at 20 K).