• Title/Summary/Keyword: 카본 나노입자

Search Result 35, Processing Time 0.023 seconds

Effect of Fillers on Dispersion of Carbon Nanotubes in a Twin-Screw Extruder (이축압출기에서 카본나노튜브의 분산에 대한 충전제 효과)

  • Hong, Seung Soo;Shin, Ji Hee;Song, Kwon Bin;Lee, Kwang Hee
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.342-346
    • /
    • 2013
  • In this study, it was attempted to disperse carbon nanotubes (CNTs) in a polymer matrix using a twin-screw extruder which was good for dispersing fillers of micron sizes but not suitable for dispersing nanometer-sized materials. Improved dispersion of CNTs could be achieved by the addition of inorganic fillers with different geometrical shapes. An increase in the matrix viscosity provided a high shear stress on aggregated CNTs, leading to a good dispersion of CNTs. The presence of the inorganic fillers was supposed to suppress the re-aggregation of CNTs in the regions where a lower shear stress was applied. As a result, the CNTs dispersion was well stabilized.

AFM을 이용한 나노 입자의 조립에 관한 연구

  • 박준기;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.152-152
    • /
    • 2004
  • 카본나노튜브(Carbon Nanotube)는 다른 물질과 구별되는 날카로움(Sharpness), 고세장비(High Aspect Ratio), 높은 기계적 강성(Stiffness), 고탄성(high Elasticity), 그리고 반도체(semi-conducting)와 도체(Metallic) 성질 때문에, 카본나노튜브는 많은 연구에 적용되고 있으며, 카본나노튜브가 부착된 AFM(Atomic Force Microscope) 팁을 이용한 AFM 측정은 CNT 응용에 있어서 매우 큰 효과를 내는 응용분야 중 하나이다. AEM 팁에 카본나노튜브를 붙이는 이전 연구는 대부분 화학증착법(Chemical Vapor Deposition)에 의해 이루어 졌으며, 매우 효과적인 방법이지만 고가의 장비와 고온의 챔버내에서 이루어진다는 문제점을 가지고 있다.(중략)

  • PDF

Characterization and Control of Airborne Particles Emitted During Production of Epoxy/Carbon Nanotube Nanocomposites (국외논문정보 - 에폭시/카본나노튜브 나노복합물 생산 중 방출되는 입자의 특성 및 관리)

  • Cena, Lorenzo G.;Peters, Thomas M.
    • 월간산업보건
    • /
    • s.279
    • /
    • pp.45-48
    • /
    • 2011
  • 이 논문은 나노물질을 다룰 때 발생하는 나노입자에 대한 특성과 관리방안 중 하나인 환기시설의 효과에 대하여 연구한 논문이다. 나노관련 연구는 아직 명확한 건강상 영향이 체계적으로 기술되어 있지는 않지만 산업보건에서는 새로운 분야이고 많은 연구가 이루어지지 않았기에 향후 우리나라도 연구가 필요할 것으로 판단되어 소개하고자 한다.

  • PDF

Magnetite Nanoparticles Containing Nanoporous Carbon for the Adsorption of Ibuprofen (마그네타이트 나노입자를 포함한 탄소나노세공체 합성과 아이부프로펜 흡착거동)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Preliminary studies on the synthesis of magnetic nanoparticles including nanoporous carbon materials have been done via a direct carbonization process from resol, ferric nitrate and triblock copolymer F127. The results show that the nanoporous magnetite/carbon ($Fe_3O_4$/carbon) with a low $Fe_3O_4$ content (1 wt%) possesses an ordered 2-D hexagonal (p6mm) structure, uniform nanopores (3.6 nm), high surface areas (up to 635 $m^2/g$) and pore volumes (up to 0.48 $cm^3/g$). Magnetite nanoparticles with a small particle size (10.2 nm) were confined in the matrix of amorphous carbon frameworks with superparamagnetic property (7.7 emu/g). The nanoporous magnetite/carbon showed maximum adsorption amount (995 mg/g) of ibuprofen after 24 h at room temperature. The nanoporous magnetite/carbon was separated from solution easily by using a magnet. The nanoporous magnetite/carbon material is a good adsorbent for hydrophobic organic drug molecules, i.e. ibuprofen.

A Study on the PTC Thermistor Characteristics of Polyethylene and Polyethylene Copolymer Composite Systems in Melt and Solution Manufacturing Method (용액 및 용융 가공방법에 따른 PE 및 PE 공중합물의 PTC 서미스터 특성 연구)

  • 김재철;박기헌;남재도
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.812-820
    • /
    • 2002
  • The positive temperature coefficient (PTC) characteristics of polymer composites were investigated with the nano-sized carbon black particles using solution tasting and melt compounding methods. The polymeric PTC composites should the electrical threshold at 35 wt% for the melt compounding method and 40 wt% for the solution casting method. The ethylene vinylacetate copolymer (EVA) composite showed a gradual increase of resistance as a function of temperature and showed a maximum at the polymer molting point. The resistance of the high-density polythylene (HDPE) composite remains unchanged with temperature but started to Increase sharply near the melting point of HDPE and showed a maximum resistance at the melting point of HDPE. The dispersion of nano-sized carbon black particles was investigated by scanning electron microscopy (SEM) and low resistance after electrical threshold, and both methods exhibited a well dispersed morphology. When the electric current was applied to the PTC composites, the resistance started increasing at the curie temperature and further increased until the trip temperature was roached. Then the resistance remained stable over the trip temperature. The secondary increase started at T$\sub$m/ of matrix polymer and kept increasing up to the trip temperature.

Electrochemical characteristic of Pt/C Electrode Catalyst prepared by Electrophoresis Method (전기영동법에 의해 제조된 Pt/C 촉매 전극의 전기화학적 특성)

  • Song, Jae-Chang;Kim, Jung-Hyun;Kim, Yoon-Su;Yoon, Jeong-Mo;Lee, Hong-Gi;Yu, Yeon-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.146.2-146.2
    • /
    • 2010
  • PEMFC를 구성하는 여러 부품 중 핵심부품은 MEA(Membrane Electrode Assembly)으로서 실제 연료전지 반응이 일어나며 연료전지의 성능을 결정하는 부품이다. 그러나 PEMFC의 특성 상 촉매로 귀금속인 Pt가 사용됨에 따라 경제성이 확보된 MEA의 성능을 얻기 위해선 현재 Pt 담지량을 0.3mg/$cm^2$ 이하로 크게 감소시키면서 Pt촉매의 고분산화와 미반응 사이트의 감소가 필요하다. 본 연구에서는 Pt 촉매의 미반응 사이트를 줄이고자 전기영동법에 의해 카본전극(carbon black + GDL) 상에 Pt 나노입자를 직접 석출시켜 Pt/C 촉매 전극을 제조 하였다. 본 실험에서는 가장 좋은 Pt 나노입자의 석출거동을 나타낸 30mA/$cm^2$, pH 2, duty cycle 25% 조건을 기준으로 하여 electro-deposition time을 통한 석출량 제어와 carbon paper의 wet proofing 정도에 따른 Pt의 석출거동을 조사하였으며, 종래의 방법으로 제조한 Pt/C 촉매전극의 전기화학적 특성과 비교 분석하였다. 전기영동 석출법에 사용된 Pt나노입자는 $H_2PtCl_6{\cdot}6H_2O$로부터 화학적 환원법으로 합성한 2~3nm 입경을 갖는 Pt콜로이드를 사용하였으며, magnetic stirring과 항온 ($20^{\circ}C$)을 유지하여 실험하였다. 전기영동 석출량 제어는 electro-deposition time을 5~25분까지 5분 간격으로 나누어 실험하였고 카본전극을 구성하는 carbon paper의 wet proofing 정도가 Pt 나노입자 석출거동에 미치는 영향을 조사하기 위하여 20, 40, 60%의 서로 다른 wet proofing 값을 갖는 carbon paper를 사용하여 Pt/C 촉매 전극을 제조하였다. 전기영동법으로 석출된 카본블랙 전극 상 Pt나노입자의 분산도와 담지량는 각각 FE-SEM과 TGA 장비를 사용하여 측정하였고, 제조된 Pt/C 촉매 전극의 전기화학적 촉매 특성은 cyclic voltammetry(CV)법으로 측정하였다.

  • PDF

Dielectric Characteristics of the Polymers Containing Nano-size Conductive Carbon Black Powders (전도성 나노 카본 블랙을 함유한 고분자 재료의 유전특성)

  • 진우석;이대길
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.68-77
    • /
    • 2004
  • The electromagnetic (EM) absorption or shielding characteristics of a material is an important issue not only for military purpose but also for commercial purposes such as radar, electric or telecommunication devices. In order to design the effective electromagnetic wave absorber, the electromagnetic characteristics of the constituents of the material should be available in target frequency band. Also, it must be possible to predict the electromagnetic properties of absorbers with respect to the content of lossy ingredients. In this study, the dielectric properties of unsaturated polyester resins containing nano-size conductive carbon black powder were measured with a free space method in the X-band frequency range and analyzed with respect to the content of carbon black. Finally, the method for estimating the dielectric properties of polymeric resin containing conductive carbon black with respect to the EM frequency was developed and verified.

Formation of Shell-Shaped Carbon Nanoparticles through Critical Transition in Irradiated Acetylene (레이저가 조사된 아세틸렌에서의 임계전이를 거쳐서 형성된 쉘 형상 카본 나노입자에 관한 연구)

  • Choi, Man-Soo;Altman, Igor S.;Kim, Young-Jeong;Pikhitsa, Peter V.;Lee, Sang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1158-1161
    • /
    • 2004
  • Shell shaped hollow carbon nanoparticles are synthesized in the oxygen-hydrogen diffusion flame with $C_{2}H_{2}$ as precursor when it is irradiated with $CO_{2}$ laser of certain power. Below this power of laser, we couldn't get any other but amorphous soot. This shell shaped hollow carbon nanoparticles shows outer wall of high degree of crystallinity with void space inside of itself. And size distribution of these nanoparticles is measured with TEM image analysis. Also the structural comparison between this carbon nanoparticle and soot is done by Raman and XRD measurement. These results show this carbon nanoparticles are of grapheme structure, which means it has good crystallinity when compared with soot.

  • PDF

PTCR Characteristics of Multifunctional Polymeric Nano Composites (PTCR 나노 복합기능 소재의 전류 차단 특성 연구)

  • 김재철;박기헌;서수정;이영관;이성재
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.367-374
    • /
    • 2002
  • Electrical characteristics of crystalline polymer composites filled with nano-sized carbon black particle were studied. The developed composite system exhibited a typical positive temperature coefficient resistance (PTCR) characteristic, where the electrical resistance sharply increased at a specific temperature. The PTCR effect was sometimes followed by a negative temperature coefficient resistance (NTCR) feature with temperature, which seemingly caused by the coagulation of nano-sized carbon black particles in the excessive quantity. The PTCR temperature was controlled by the carbon black content and the external voltage. The change of electric conductivity was shown as a function of carbon black content, and the resistance was constant when the carbon black content was over 20 wt%. The room-temperature resistance was maintained by a repeated heating and cooling. The excellent PTCR characteristic was demonstrated by the low resistance in the initial stage and the instantaneous heating capability.

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.