• 제목/요약/키워드: 카본세라믹

검색결과 42건 처리시간 0.019초

리튬이온전지용 부극재료인 페트롤리엄 및 콜타르 피치 카본의 전지반응 특성에 관한 연구 (Study on the Characteristics of Cell Reactions for Petroleum- and Coal Tar Pitch-based Carbons as a Negative Electrode for Li-iion Batteries)

  • 박영태;유광수;김정식
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.128-133
    • /
    • 2000
  • In this work, soft carbons produced by pyrolysis of petroleum and coal-tar pitch were used as the negative electrode for Li-ion batteries. We studeid the charge/discharge capacity and the interfacial reaction of these electrodes by constructing a half cell. Charge/discharge property was studied by a constant-current step and the interfacial reaction between the electrolyte and the surface of a carbon electrode was studied by the cyclic voltammetry. The initial charge/discharge capacity for the coal-tar pitch carbon increased exceedingly with the heat treatment temperature. On hte other hand, the capacity of the petroleum pitch carbon increased with temperature up to 1000$^{\circ}C$, thereafter decreased continuously. While the charge capacity decreased with the cycle number, the reversibility increased above 90%. In addition, the thermal stability and crystallization of petroleum and coal-tar pitches were analyzed by TGA and XRD, respectively.

  • PDF

실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성 (Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture)

  • 김종찬;이은주;김득중
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

고급차의 제동 신뢰성 향상을 위한 카본 세라믹 복합재의 제동 특성 제어 및 향후 기술 진화 트랜드 예측에 관한 연구 (A Study on Braking Characteristics Control of Carbon Ceramic Composite for Brake Reliability Improvement of Luxury Car and Future Technology Evolution Trend Prediction)

  • 심재훈;전갑배;이중희;박병준;임동원;현은재;정광기;김기정;김홍기
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.684-693
    • /
    • 2016
  • The luxury car industry has grown 10.5 % every year from 2010 to 2014. For this reason, it is very important for automotive companies to improve profitability and brand value. High-performance brake systems have become an absolute necessity because of the increase in engine power and customer preference among other factors. Also, competing automotive companies actively reinforce domestic production in order to maintain quality and infrastructure for luxury cars. In this regard, we demonstrated new carbon ceramic brakes to improve brake reliability for luxury cars and to improve the competitiveness of automotive companies. Finally, we propose the next-generation braking technology by predicting technological evolution trends.

가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구 (A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor)

  • 허태환;송현준;정영진;곽영제
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.395-400
    • /
    • 2020
  • 본 연구에서는 카본나노튜브(CNT) 면상발열체에 preceramic polymer 중 하나인 실세스퀴아잔을 코팅하여 고온에서 안정적인 발열이 가능한 CNT/SiCN 복합체 시트를 제조하였다. 제조된 복합체 필름은 FE-SEM을 통해 실세스퀴아잔이 CNT 면상발열체의 표면을 모두 코팅한 것을 확인하였다. 또한 800℃의 열처리를 통해 실세 스퀴아잔이 SiCN 세라믹으로 전환되어도 표면의 결함이 발견되지 않고 온전한 구조를 유지하는 것을 확인하였다. CNT/SiCN 복합체 시트는 질소와 공기 분위기 모두에서 기존의 CNT 시트보다도 높은 열적 안정성을 확보할 수 있었다. 마지막으로 제조된 CNT/SiCN 복합체 필름은 대기 중에서 700℃ 이상의 온도로 발열이 가능하였고 발열 후 온도를 식히고 재발열 또한 성공적으로 이루어졌다.

유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구 (Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement)

  • 장복기;김윤주
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.690-695
    • /
    • 2004
  • 본 연구에서는 무기(강, 아스베스트와 카본) 및 유기(폴리아크릴과 폴리아마이드) 섬유가 포트랜드 시멘트의 물성 보강에 미치는 영향을 조사하였다. 각 시편의 하중-변형 관계도로부터 굽힘강도, 탄성계수, 파괴에너지 및 파괴인성 값을 구하여 서로 비교하였다. 그리고 따로 충격에너지 실험도 수행하였으며 파괴에너지와 비교하였다. 휨강도 개선에는 무기(아스베스트) 섬유보강이 가장 효과적이었으며, 충격에너지의 보강섬유로는 유기(폴리아크릴) 섬유가 가장 좋았다. 한편 강 섬유는 휨 강도와 충격에너지 양자를 동시에 보강하는 데에 가장 적합했다. 또한 강 섬유는 모든 섬유 중에서 가장 높은 파괴에너지와 파괴인성 값을 나타내었다.

Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심 (Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content)

  • 송인혁;박미정;김해두;김영욱;배지수
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

고품질 유리질 카본 코팅을 위한 페놀 수지의 고압 경화 (High Pressure Curing of Phenol Resin for High Quality Coating of Glassy Carbon)

  • 홍석기;조광연;권오현;조용수;장승조
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.141-146
    • /
    • 2011
  • Successful coating of high quality glassy carbon is introduced by applying high pressure during the curing process of dip-coated phenol resin on graphite. The dependence of the applied pressure on the quality of the glassy carbon layer has not been reported so far. Pressure was changed from 0 to 400 psi during curing at $200^{\circ}C$. After carbonized at $1100^{\circ}C$ in inert atmosphere for the 400 psicured sample, as a promising result, a thick (~ 3 mm) and smooth glassy carbon layer could be obtained without any breakage, and the yield of carbonization was remarkably increased. It is believed that the cross-linking of resins results in decreasing volatile contents and, thus, increasing the yield of the glassy carbon. The origin of the improvement is discussed on the basis of several analytical results including FE-SEM, FT-IT and Raman spectrum.

알루미나 또는 카본 코팅 SiC 휘스커의 코팅층 두께 및 형상에 미치는 코팅조건의 영향 (Effects of Coating Conditions on the Thickness and Morphology of Alumina- or Carbon-Coated Layers on SiC Whiskers)

  • 배인경;장병국;조원승;최상욱
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.513-520
    • /
    • 1999
  • Alumina-coated SiC whiskers wee prepared by the calcination (1150$^{\circ}C$, 1h, Ar) of the alumina hydrate layer which was precipitated homogeneously on whisker surface from a solution of Al2(SO4)3 and urea as a precipitant. In addition carbon coated SiC whiskers were prepared by the pyrolysis (1000$^{\circ}C$, 4h Ar) of phenolic resin coated whisker. The effects of coating conditions on the thickness and morphology of the coated layers were examined by SEM and TEM. It was found that Al2O3-coating layers become thinner and more uniform with decreasing the Al2(SO4)3 concentration. Thin (0.075-0.1$\mu\textrm{m}$) and uniformly alumina-coating layers were obtained at the Al2(SO4)3 concentration 0.010mol/l. On the other han carbon-coating layers were uniform but very thin (5-16 nm) in thickness. For thicker carbon-coating layers ethanol as a disperse medium was found to be more efficient compared tousing acetone.

  • PDF

보론과 카본 조제를 사용한 AlN-SiC-TiB2계의 고온가압 및 Spark Plasma Sintering (Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives)

  • 이세훈;김해두
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.467-471
    • /
    • 2009
  • Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.

MnS / 카본나노튜브 복합체의 합성과 리튬 전기화학적 거동 (Synthesis and Li Electroactivity of MnS/Carbon Nanotube Composites)

  • 이광희;민경미;김동완
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.539-544
    • /
    • 2013
  • A simple synthetic process is demonstrated for the preparation of MnS/carbon nanotube (CNT) composites for Li ion battery electrodes. CNTs were initially treated using a strong acid solution to generate carboxylate ions ($-COO^-$) on their surfaces. The MnS/CNT composites were synthesized by a polyvinyl-pyrrolidone-assisted hydrothermal method in the presence of as-functionalized CNTs. The phase and morphology of the MnS/CNT composites and pure MnS microspheres were characterized using X-ray diffraction and high-resolution transmission electron microscopy. Furthermore, the Li electroactivity levels of the MnS/CNT composites and MnS microspheres were investigated using cyclic voltammetry and galvanostatic cycling. The MnS/CNT composite electrodes showed higher specific capacities exceeding 365 $mA\;h\;g^{-1}$ at a C/10 current rate and enhanced cyclic performance compared to pure MnS microspheres.