• 제목/요약/키워드: 카메라 모델 판별

검색결과 28건 처리시간 0.021초

움직임 정보에 기반한 화재 감시 (Fire Detection based on Motion Information)

  • 이대현;이상화;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.326-327
    • /
    • 2015
  • 본 논문에서는 화재의 움직임 정보에 기반하여 역동적인 화재를 감지하는 기법을 제안한다. 우선 감시 카메라와 같은 고정형 감시 장치로부터 얻어진 색 정보를 분리하기 쉬운 좌표계로 변환하고 이전에 수집된 데이터들로부터 얻어진 사전 정보로부터 화염 영역을 추출한다. 또한 화염 영역의 가장자리가 움직임이 매우 크다는 사실에 기반하여 광흐름 벡터로 얻어진 시간적 분산값을 이용한 움직임 모델을 생성한다. 화염 영역은 움직임 모델과 결합되며 오탐을 걸러내기 위해 충분한 양의 화재 영역이 중첩될 때 최종적으로 화재를 판별한다. 본 논문에서 제안한 방법은 실험 결과에서 우수한 탐지 능력을 보인다.

  • PDF

영상인식 기반의 위치기반서비스를 위한 실내위치인식 시스템 (Indoor Location Positioning System for Image Recognition based LBS)

  • 김종배
    • 한국공간정보시스템학회 논문지
    • /
    • 제10권2호
    • /
    • pp.49-62
    • /
    • 2008
  • 본 논문은 영상인식 기반의 위치기반서비스를 위한 실내위치인식 시스템을 제안한다. 제안한 시스템은 실내 환경에 적용 가능한 비젼 기반의 위치 인식 시스템으로 위치 인식 결과를 사용자의 시야에 자연스럽게 중첩함으로써 증강 현실을 구현한다. 제안한 방법은 기존의 위치인식 방법과 달리 부가적 인 위치 인식 하드웨어 사용없이 컴퓨터 비젼 기술을 이용한 위치 인식 방법이다. 이를 위해 사용자에 의해 착용된 모바일 PC와 함께 카메라를 통해 영상을 입력하고, 입력된 영상에서 패턴매칭과 위치모델을 참조하여 사용자의 위치를 판별한다. 제안한 시스템은 이미지 시퀀스 매칭 방법과 마크 검출을 통해 위치를 추정하고, 사전에 정의한 위치모델을 사용함으로써 최종 위치를 인식한다. 제안한 시스템은 마크 검출을 위해 적응적 암계치 방법을 제안하고, 위치 판별을 위해 위치모델을 사용함으로써 보다 정확하고 효율적인 위치 인식 결과를 얻을 수 있다. 실내 환경의 위치 인식을 위해 제안한 시스템을 적용한 결과, 실내 환경에 대해 익숙지 않은 사용자들에게 효과적으로 위치인식 서비스에 적용할 수 있다.

  • PDF

뉴로-퍼지 추론시스템을 이용한 입체 영상 카메라의 왜곡 영상 보정 (A Compensation for Distortion of Stereo-scopic Camera Image Using Neuro-Fuzzy Inference System)

  • 서한석;임화영
    • 한국전자통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.262-268
    • /
    • 2010
  • 본 논문은 카메라의 고정 초점방식 렌즈를 통해 얻은 영상의 왜곡을 보상하여 왜곡된 이미지 좌표에서 본래의 좌표를 갖는 원영상으로 복원하는 연구이다. 이미지 센서의 다양한 영상 기기 발달과 활용으로 다방면의 산업분야에 확대 이용되고 있으나, 카메라의 소형화와 경량화 필요로 인해 렌즈의 굴곡에 의한 수신 영상의 왜곡이 영향을 미치는 경향이 많다. 특히, 입체 영상 카메라 응용 기기인 경우 좌, 우측 렌즈의 서로 다른 왜곡으로 입체감 저하 및 좌우 이미지 왜곡 등이 수반된다. 좌, 우측 카메라 수신 영상의 각 부분별로 본래의 좌표로 환산하는 근사식을 세우고 이들을 종합하는 방식으로 접근했다. 적응 뉴로-퍼지 추론시스템을 구성하여 소속 함수를 통해 분할하고 1차 Sugeno fuzzy 모델식으로 추정하여 좌, 우측 본래의 영상에 근접한 결과를 얻었다. 이로서 저가이며 소형 렌즈를 활용한 영상으로도 정확한 입체 영상 센싱 기능과 판별을 기대할 수 있게 된다.

실시간 객체 검출 기술 YOLOv5를 이용한 스마트 엘리베이터 시스템에 관한 연구 (A Study on the Elevator System Using Real-time Object Detection Technology YOLOv5)

  • 박선빈;정유정;이다은;김태국
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.103-108
    • /
    • 2024
  • 본 논문에서는 YOLO(You only look once)v5를 기반으로 한 실시간 객체 검출 기술을 활용하여 스마트 엘리베이터 시스템을 연구하였다. 외부 엘리베이터 버튼이 눌러지면 YOLOv5 모델이 카메라 영상을 분석하여 대기자의 유무를 판별하고, 대기자가 없다고 판별되면 해당 버튼을 자동으로 취소시킨다. 연구에서는 YOLOv5와 사물인터넷에서 활용되는 MQTT(Message Queuing Telemetry Transport)를 통한 객체 탐지 및 통신 기술의 효과적인 구현 방법을 소개한다. 그리고 이를 활용하여 대기자 유무를 실시간으로 판별하는 스마트 엘리베이터 시스템을 구현하였다. 제안한 시스템은 불필요한 소비 전력을 절감하면서 CCTV(closed-circuit television)의 역할을 할 수 있다. 따라서 제안한 스마트 엘리베이터 시스템은 안전 및 치안 문제에도 기여할 수 있을 것으로 기대한다.

360 카메라를 이용한 디지털 트윈 강의실 (Digital Twin Classroom using 360 Camera)

  • 유현태;김진호;김유성;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.232-234
    • /
    • 2021
  • 본 논문에서는 딥러닝 얼굴 인식을 이용하여 실시간 360 공간 Classroom 과 실시간을 기반으로 한 가상 360 공간 Classroom 을 제안한다. MTCNN 을 이용한 얼굴 검출 및 Inception Resnet V1 모델을 이용한 딥러닝 기법을 통해 얼굴인식을 진행하고 HSV 색공간 기반의 화자 판별, 아바타 Rendering, 출석 체크 등을 진행한다. 이후 시각화를 위해 제작한 Web UI/UX 를 통해 사용자에게 현실과 가상 공간을 넘나드는 Twin Classroom 을 제공한다. 따라서 사용자는 새로운 화상 교육 플랫폼에서 보다 개선되고 생동감 있는 Classroom 에서 교육을 받을 수 있다.

  • PDF

움직임 벡터와 SVDD를 이용한 영상 감시 시스템에서 한우의 특이 행동 탐지 (Unusual Behavior Detection of Korean Cows using Motion Vector and SVDD in Video Surveillance System)

  • 오승근;박대희;장홍희;정용화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권11호
    • /
    • pp.795-800
    • /
    • 2013
  • 한우 발정기의 조기 탐지는 축산 농가의 경제성을 향상시키는 매우 중요한 연구 과제 중 하나이다. 이를 위한 다양한 방법들이 제안되었으나, 현재까지도 시스템의 경제성 문제를 포함한 조기 발정 탐지 및 탐지 정확도 등에 여전히 취약한 점이 있는 것이 사실이다. 본 논문에서는 감시카메라 환경에서 축사내 승가 행동을 포함하는 한우의 특이 행동들을 탐지하는 다중 객체의 특이 행동 탐지 프로토타입 시스템을 제안한다. 다중 객체의 특이 행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황 혹은 비정상적인 행동들을 신속하고 정확하게 탐지하는 분야를 말한다. 제안된 시스템은 한우 축사에 고정 설치된 카메라의 입력 동영상으로 부터 움직임 벡터 정보를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 특이 행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지기로 설계하였다. 실제로 진주에 위치한 한 축사에서 취득한 한우 암소의 영상 정보를 이용하여 본 논문에서 제안한 시스템의 성능을 실험적으로 검증한다.

이동물체 추적을 위한 실시간 Hausdorff 정합 알고리즘 (Real-time Hausdorff Matching Algorithm for Tracking of Moving Object)

  • 전춘;이주신
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.707-714
    • /
    • 2002
  • 본 연구에서는 능동카메라에서 취득된 영상에서 이동물체를 효율적으로 추적하기위한 실시간 Hausdorff 정합 알고리즘을 제안하였다. 알고리즘은 이동물체의 윤곽선영상을모델로 사용하고, Hausdorff 거리를 모델과 영상사이의 동일성 판별을 위한 평가함수로 사용하였으며, 실시간 처리를 위하여 Hausdorff 거리를 고속으로 계산하기 위한 등가변환방법과 기존 탐색알고리즘의 탐색회수를 줄이고 성능을 개선할 수 있는 반 교차정합기법을 제안하였다. 실험영상에 대한 모의실험 결과 제안한 알고리즘은 이동물체의 위치를 정확히 탐색할 수 있으며, 실시간 처리가 가능하도록 처리시간을 단축시킬 수 있음을 입증하였다.

시멘틱세그멘테이션을 활용한 태양광 패널 고장 감지 시스템 구현 (Implementation of Photovoltaic Panel failure detection system using semantic segmentation)

  • 신광성;신성윤
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1777-1783
    • /
    • 2021
  • 대단위 신재생 에너지 발전단지의 효율적인 유지관리를 위해 드론의 활용이 점차 증가하고 있다. 오래전부터 태양광 패널을 드론으로 촬영하여 패널의 유실 및 오염 등을 관리하고 있다. 본 논문에서는 열화상카메라를 장착한 드론을 이용하여 획득된 태양광패널 이미지에서 아크, 단선, 크랙 등의 고장 유무를 판별하기 위해 시멘틱세그멘테이션 기법을 이용한 분류모델을 제안한다. 또한 적은 데이터셋으로도 강인한 분류 성능을 보이는 U-Net의 튜닝을 통해 효율적인 분류모델을 구현하였다.

증강현실을 위한 히스토그램 기반의 손 인식 시스템 (Histogram Based Hand Recognition System for Augmented Reality)

  • 고민수;유지상
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1564-1572
    • /
    • 2011
  • 본 논문에서는 증강현실을 위한 히스토그램 기반의 손 인식 기법을 제안한다. 손동작 인식은 사용자와 컴퓨터 사이의 친숙한 상호작용을 가능하게 한다. 하지만, 비젼 기반의 손동작 인식은 복잡한 손의 형태로 인한 관찰 방향 변화에 따른 입력 영상의 다양함으로 인식에 어려움이 따른다. 따라서 본 논문에서는 손의 형태적인 특징을 이용한 새로운 모델을 제안한다. 제안하는 기법에서 손 인식은 카메라로부터 획득한 영상에서 손 영역을 분리하는 부분과 인식하는 부분으로 구성된다. 카메라로부터 획득한 영상에서 배정을 제거하고 피부색 정보를 이용하여 손 영역을 분리한다. 다음으로 히스토그램을 이용하여 손의 특징점을 구하여 손의 형태를 계산한다. 마지막으로 판별된 손인식 정보를 이용하여 3차원 객체를 제어하는 증강현실 시스템을 구현하였다. 실험을 통해 제안한 기법의 구현 속도가 빠르고 인식률도 91.7%로 비교적 높음을 확인하였다.

문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구 (A Study on Rotational Alignment Algorithm for Improving Character Recognition)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.79-84
    • /
    • 2019
  • 영상을 기반으로 하는 기술들의 지속적인 발전으로 다양한 분야에서 활용되고 있고, 카메라를 통하여 획득한 영상의 객체를 분석하고 판별하는 비전 시스템의 기술 수요가 급속하게 증가하고 있다. 비전 시스템의 핵심 기술인 영상처리는 반도체 생산 분야의 불량 검사, 타이어 표면의 숫자 및 심볼과 같은 객체 인식 검사 등에 사용되고 있고, 자동차 번호판 인식 등의 연구가 계속하여 이루어지고 있는 실정으로, 객체를 신속, 정확하게 인식할 필요가 있다. 본 논문에서는 곡면과 같은 곳에 마킹되어 있는 숫자나 심볼과 같이 기울어진 객체를 인식하기 위하여 입력된 영상 이미지의 객체 기울기에 대한 각도 값을 확인하여 객체의 회전 정렬을 통한 인식 모델을 제안한다. 제안 모델은 컨투어 알고리즘을 기반으로 객체 영역을 추출하고, 객체의 각도를 산출한 후, 회전 정렬된 이미지에 대한 객체 인식을 진행할 수 있는 모델이다. 향후 연구에서는 기계학습을 통한 탬플릿 매칭 연구가 필요하다.