• Title/Summary/Keyword: 칩 제어

Search Result 503, Processing Time 0.026 seconds

Design of a Tripple-Mode DC-DC Buck Converter (3중 모드 DC-DC 벅 변환기 설계)

  • Yu, Seong-Mok;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.134-142
    • /
    • 2011
  • This paper describes a tripple-mode high-efficiency DC-DC buck converter. The DC-DC buck converter operate in PWM(Pulse Width Modulation) mode at moderate to heavy loads(100mA~500mA), in PFM(Pulse Frequency Modulation)at light loads(1mA~100mA), and in LDO(Low Drop Out) mode at the sleep mode(<1mA). In PFM mode DPSS(Dynamic Partial Shutdown Strategy) is also employed to increase the efficiency at light loads. The triple-mode converter can thus achieve high efficiencies over wide load current range. The proposed DC-DC converter is designed in a CMOS 0.18um technology. It has a maximum power efficiency of 96.4% and maximum output current of 500mA. The input and output voltages are 3.3V and 2.5V, respectively. The chip size is 1.15mm ${\times}$ 1.10mm including pads.

Development of Power Management System for Efficient Energy Usage of Small Generator (소형 발전기의 에너지 절약을 위한 전력관리 시스템 개발)

  • Jeon, Min-Ho;Oh, Chang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2601-2606
    • /
    • 2012
  • In this paper, an electricity management system, which saves energy by utilizing electricity consumption of load from an environment that uses at least two compact generators, is proposed and developed. A hardware is constructed by using TMS320C6713 DSP chip made by TI that is capable of high speed hardware floating point processing while serial communication is used for communication with a monitoring PC. Manual control is made possible from the monitoring PC and automatic on/off is enabled in the generator by using data collected by CT/PT sensor from the DSP mainboard. Test results confirm that the electricity management system proposed in this study functions without abnormality. The application of an algorithm that saves energy by using electricity consumption of load also allows for a longer supply of electricity compared to continuously using two compact generators.

Design of the Voltage Controlled Oscillator for Low Voltage (저전압용 전압제어발진기의 설계)

  • Lee, Jong-In;Jung, Dong-Soo;Jung, Hak-Kee;Yoon, Young-Nam;Lee, Sang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2480-2486
    • /
    • 2012
  • The design of low voltage LC-VCO(LC Voltage Controlled Oscillator) has been presented to optimize the phase noise and power consumption for the block of frequency synthesis to satisfy WCDMA system specification in this paper. The parameters for minimum phase noise has been obtained in the region of design, using the lines of the tuning range and the excess gain in the plane of the inductance and the transconductance of MOS transistor to compensate the loss of LC-tank. As a result of simulation, the phase noise characteristics is -113dBc/Hz for offset of 1MHz. The optimum designed LC-VCO has been fabricated using the process of 0.25um CMOS. As a result of measurement for fabricated chip, the phase noise characteristics is -116dBc/Hz for offset of 1MHz. The power consumption is 15mW, and Kvco is 370MHz/V.

Implementation of 40 Gb/s Network Processor of Wire-Speed Flow Management (40 Gb/s 실시간 플로우 관리 네트워크 프로세서 구현)

  • Doo, Kyeong-Hwan;Lee, Bhum-Cheol;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.814-821
    • /
    • 2012
  • We propose a network processor called an OmniFlow processor capable of wire-speed flow management by a hardware-based flow admission control(FAC) in this paper. Because the OmniFlow processor can set up and release a wire-speed connection for flows, the update period of flows can be set to a short time, and only active flows can be effectively managed by terminating a flow that does not have a packet transmitted within this period. Therefore, the FAC can be used to provide a reliable transmission of UDP as well as TCP applications. This processor is fabricated in 65nm CMOS technology, and total gate count is 25 million. It has 40 Gb/s throughput performance in using the 32 RISC cores when maximum operating frequency is 555MHz.

In situ Microfluidic Method for the Generation of Uniform PEG Microfiber (PEG 마이크로 섬유 제조를 위한 마이크로플루이딕 제조방법)

  • Choi, Chang-Hyung;Jung, Jae-Hoon;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.470-474
    • /
    • 2010
  • In this study, we presents a simple microfluidic approach for generating uniform Poly(ethylene glycol)(PEG) microfiber. Elongated flow pattern of monomer induced by sheath flow of immiscible oil as continuous phase is generated in Y-shape junction and in situ polymerization by UV exposure. For uniform microfiber, we investigate the optimized flow condition and draw phase diagram as function of Ca and Qd. At the region for stable elongated flow pattern, the microfiber generated in microfluidic chip is very uniform and highly reproducible. Importantly, the thickness of microfibers can be easily controlled by flow rate of continuous and disperse phase. We also demonstrate the feasibility for biological application as encapsulating FITC-BSA in PEG microfiber.

High-level Modeling and Test Generation With VHDL for Sequential Circuits (상위레벨에서의 VHDL에 의한 순차회로 모델링과 테스트생성)

  • Lee, Jae-Min;Lee, Jong-Han
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1346-1353
    • /
    • 1996
  • In this paper, we propose a modeling method for the flip-flops and test generation algorithms to detect the faults in the sequential circuits using VHDL in the high-level design environment. RS, JK, D and T flip-flops are modeled using data flow types. The sequence of micro-operation which is the basic structure of a chip-level leads to a control point where varnishing occurs to one of two micro- operation sequence. In order to model the fault of one micro-operation(FMOP) that perturb another micro-operation effectively, the concept of goal trees and some heuristic rules are used. Given a faulty FMOP or fault of control point (FCON), a test pattern is generated by fault sensitization, path sensitization and determination of the imput combinations that will justify the path sensitization. The fault models are restricted to the data flow model in the ARCHITECTURE statement of VHDL. The proposed algorithm is implemented in the C language and its efficiency is confirmed by some examples.

  • PDF

Design of Frequency Synthesizer using Novel Architecture Programmable Frequency Divider (새로운 구조의 프로그램어블 주파수 분주기를 사용한 주파수 합성기 설계)

  • 김태엽;박수양;손상희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.500-505
    • /
    • 2002
  • In this paper, a novel architecture of programmable divider with fifty percent duty cycle output and programmable dividing number has been proposed. Through HSPICE simulation, a 900MHz frequency synthesizer with proposed frequency divider has designed in a standard 0.25$\mu\textrm{m}$ CMOS technology. To verify the operation of proposed frequency divider, a chip had been fabricated using 0.65$\mu\textrm{m}$ 2-poly, 3-metal standard CMOS processing and experimental result shows that the proposed frequency divider works well. The designed voltage controlled oscillator(VCO) has a center frequency of 900MHz, a tuning range of ${\pm}$10%, and a gain of 154MHz/V. The simulated frequency synthesizer performance has a settling time of 1.5${\mu}\textrm{s}$, a frequency range from 820MHz to 1GHz and power consumption of 70mW at 2.5V power supply voltage.

A Fast Locking Phase Locked Loop with Multiple Charge Pumps (다중 전하펌프를 이용한 고속 위상고정루프)

  • Song, Youn-Gui;Choi, Young-Shig;Ryu, Ji-Goo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.71-77
    • /
    • 2009
  • A novel phase-locked loop(PLL) architecture with multiple charge pumps for fast locking has been proposed. The proposed PLL has three charge pumps. The effective capacitance and resistance of the loop filter can be scaled up/down according to the locking status by controlling the direction and magnitude of each charge pump current. The fast locking PLL that changes its loop bandwidth through controlling charge pumps depending on locking status has been designed. The capacitor usually occupying the larger portion of the chip is also minimized with the proposed scheme. Therefore, the PLL size of $990{\mu}m\;{\times}\;670{\mu}m$ including resistors and capacitors at the bandwidth of 29.9KHz has been achieved. It has been fabricated with 3.3V $0.35{\mu}m$ CMOS process. The locking time is less than $6{\mu}s$ with the measured phase noise of -90.45dBc/Hz @1MHz at 851.2MHz output frequency.

VRML Database Access for 3D Real-time Data Visualization in MiWiTM Thermal Wireless Sensor Network (마이와이 표준의 열 센서망의 3차원 실시간 자료 시각화를 위한 가상 현실 모델링 언어 데이터베이스 액세스)

  • Wan, Xue-Fen;Yang, Yi;Cui, Jian;Zheng, Tao;Ma, Li
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.164-170
    • /
    • 2012
  • A Virtual Reality Modeling Language (VRML) database access in remote virtual reality control platform for dyeing enterprise $MiWi^{TM}$ thermal sensor network is presented in this paper. The VRML-ASP framework is introduced for 3D real-time data plotting in this application. The activities of thermal sensor nodes and sensor area are analyzed. The database access framework is optimized for $MiWi^{TM}$ wireless sensor networks. The experimental results show that VRML-ASP database access framework could be a reliable and competitive data-manage candidate for targeted virtual reality remote industrial visualization application.

A Ka-band 10 W Power Amplifier Module utilizing Pulse Timing Control (펄스 타이밍 제어를 활용한 Ka-대역 10 W 전력증폭기 모듈)

  • Jang, Seok-Hyun;Kim, Kyeong-Hak;Kwon, Tae-Min;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.14-21
    • /
    • 2009
  • In this paper, a Ka-band 10 W power amplifier module with seven power MMIC bare dies is designed and fabricated using MIC technology which combines multiple MMIC chips on a thin film substrate. Modified Wilkinson power dividers/combiners and CBFGCPW-Microstrip transitions for suppressing resonance and reducing connection loss are utilized for high-gain and high-power millimeter wave modules. A new TTL pulse timing control scheme is proposed to improve output power degradation due to large bypass capacitors in the gate bias circuit. Pulse-mode operation time is extended more than 200 nsec and output power increase of 0.62 W is achieved by applying the proposed scheme to the Ka-band 10 W power amplifier module operating in the pulsed condition of 10 kHz and $5\;{\mu}sec$. The implemented power amplifier module shows a power gain of 59.5 dB and an output power of 11.89 W.