• Title/Summary/Keyword: 칩 절단

Search Result 31, Processing Time 0.03 seconds

A Study on the Chip Flow Using Finite Element Method (유한요소법을 이용한 칩유동에 관한 연구)

  • 김경우;김우순;최현민;채왕석;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.891-894
    • /
    • 2001
  • In this work, an effort is made to investigate the behavior of a chip, from its initial flow to its final breaking stage. The expression for chip flow in grooved tools is verified analytically using FEM. Cutting parameters like velocity and depth of cut have a profound influence on chip flow behavior. Chip curling increases and, for a given tool geometry, effectiveness of the groove increases with increasing depth of cut. The feasibility of tool design using FEM simulations is also demonstrated. Optimization of tool geometry results in better chip control.

  • PDF

탈피복에 공급하는 사용후핵연료봉 절단방식 분석

  • Kim, Yeong-Hwan;Park, Geun-Il;Lee, Jeong-Won;Lee, Yeong-Sun;Lee, Do-Yeon;Kim, Su-Seong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2011.10a
    • /
    • pp.161-162
    • /
    • 2011
  • 유압동력사용 전제하에, 기계식탈피복을 고려하지 않을 때는 전단방식이 가장 유리함을 알 수 있다. 절단방식은 전단방식에 비해서 낮은 생산성이 단점이나, 높은 원형도의 연료봉 절단면이 요구되거나, 비산에 의한 칩 분리, 쿨링(cooling) 장치를 보완하면 절단방식이 유리하다. 또한 수평식 슬릿장치는 커팅 블레이드의 낮은 내구성으로 생산성이 낮은 것이 단점이나 내구성이 강한 공구를 사용하여 처리 속도를 향상한다는 전제에서 실험적 검증의 확보, 그리고 별도의 복잡한 펠릿/헐 분리장치를 보완하면 수평식 슬릿 방식이 유리하다.

  • PDF

Study on Vibrated Cutting Blade with Hinge Mechanism (힌지구조 진동절단장치에 관한 연구)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.443-448
    • /
    • 2010
  • Rapid advance in information technology requires high performance devices with compact size. Integrated multi-layer electronic element with different functions enables those compact devices to possess various performances and powerful capabilities. In mass production, the multi-layer electronic element is manufactured as a bulk type with a large number of parts for productivity. However, this may cause the electronic part to be damaged in the cutting process of the bulk elements to separate into each part. Therefore the cutting performance of multi-layer element bulk is playing an important role in the view of production efficiency. This study focuses on the cutting characteristics of multi-layer electronic elements. In order to increase the efficiency, the vibration cutting method was applied to the blade cutting machine. Flexure hinge structure, which is an physical amplifier of increasing displacement, was attached to the vibration cutting device for machining efficiency. The behaviors of flexure hinge were modeled with Lagrange equation and simulated with finite element method (FEM). Performance of hinge structure was verified by experimental modal analysis (EMA) for hinge structure to be tuned to the specific mode of vibrations. Cutting experiments of multi-layer elements were conducted with the proposed vibrating cutting module, and the characteristics was analyzed.

Chip Breaking Characteristics Depending on Equivalent Effective Rake Angle in Turning (외경선삭가공시 등가유효경사각에 따른 칩절단 특성)

  • Lee, Young-Moon;Chang, Seung-Il;Sun, Jeong-Woo;Yun, Jong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • Machinability in metal cutting processes depends on cutting input conditions such as cutting velocity, feed rate, depth of cut, types of work material and tool shape factors. In this study, to assess chip breaking characteristics of a turning process, an equivalent oblique cutting system to this has been established. And the equivalent effective rake angle was determined using side rake angle, back rake angle and side cutting edge angle of the tool. A non-dimensional parameter, Chip breaking index(CB), was used to assess Chip breaking characteristics of chip in conjunction with the equivalent effective rake angle. In case of positive rake angles of the equivalent effective rake, the back rake angle has little effect on the chip breaking characteristics however, in case of negative ones, the side rake angle has some effect on Chip breaking characteristics.

  • PDF

The Prediction and Classification of the Chip Fomation using Cutting Force (절삭력에 의한 칩의 형상분류와 칩형상 예측)

  • 최원식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.40-46
    • /
    • 1998
  • In order to achieve high flexibility in manufacture, chip control is one of the most serious problems at present. The continuous type chip (uncontrolled chip), which interrupts the normal cutting process and damages the operator, tool and workpiece have a higher force ratio. while the controlled chip which is 6 or 9 type and C type, has the values of the force ratio below 0.6 The chips were classified by 4 types. in chip formation and by described chip history during the cutting process. Finally, the feasibility of utilizing force ratios in chip control will be pointed out while comparing generated force signals during the cutting process.

  • PDF

Effect of Chip Breaker Shape and Cutting Condition on the Chip Breaking and Surface Roughness (칩브레이커의 형상과 절삭조건이 칩 절단과 표면거칠기에 미치는 영향)

  • 나기철;태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.17-28
    • /
    • 1994
  • Chip breaking is important in lathe work for maintaining good surface of the products and safety of operator. The purpose of this study is to investigate the performance of chip breaking and chip shape resulted from the carbide inserts with grooved type and obstruction type chip breaker. Experiments have been performed under the following cutting conditions, (1) constant cutting speed with variable depth of cut and feed rate, (2) constant depth of cut with variable cutting speed and feed rate. Also, the flying distance of chip and it's distribution have been investigated. As a results, good performance of chip breaking can be obtained for small radius of curvature and land width of grooved type chip breaker. And the thickness of chip increase with the increase of feed rate and decrease of cutting speed, and the chip breaking becomes easier with the increase of chip thickness due to the large deformation rate. Obstraction type chip breaker shows better performance of surface roughness than the grooved type. The flying distance of the chips over 90% are less than 1 meter, and the distance decreases as the feed rate decreases.

  • PDF

Prediction of Chip Forms using Neural Network and Experimental Design Method (신경회로망과 실험계획법을 이용한 칩형상 예측)

  • 한성종;최진필;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.64-70
    • /
    • 2003
  • This paper suggests a systematic methodology to predict chip forms using the experimental design technique and the neural network. Significant factors determined with ANOVA analysis are used as input variables of the neural network back-propagation algorithm. It has been shown that cutting conditions and cutting tool shapes have distinct effects on the chip forms, so chip breaking. Cutting tools are represented using the Z-map method, which differs from existing methods using some chip breaker parameters. After training the neural network with selected input variables, chip forms are predicted and compared with original chip forms obtained from experiments under same input conditions, showing that chip forms are same at all conditions. To verify the suggested model, one tool not used in training the model is chosen and input to the model. Under various cutting conditions, predicted chip forms agree well with those obtained from cutting experiments. The suggested method could reduce the cost and time significantly in designing cutting tools as well as replacing the“trial-and-error”design method.

Development of Internal Laser Scribing System for Cutting of Sapphire Wafer in LED Chip Fabrication Processes (LED 칩 제조용 사파이어 웨이퍼 절단을 위한 내부 레이저 스크라이빙 시스템 개발)

  • Kim, Jong-Su;Ryu, Byung-So;Kim, Ki-Beom;Song, Ki-Hyeok;Kim, Byung-Chan;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.104-110
    • /
    • 2015
  • LED has added value as a lighting source in the illuminating industry because of its high efficiency and low power consumption. In LED production processes, the chip cutting process, which mainly uses a scribing process with a laser has an effect on quality and productivity of LED. This scribing process causes problems like heat deformation, decreasing strength. The inner laser method, which makes a void in wafer and induces self-cracking, can overcome these problems. In this paper, cutting sapphire wafer for fabricating LED chip using the inner laser scribing process is proposed and evaluated. The aim is to settle basic experiment conditions, determine parameters of cutting, and analyze the characteristics of cutting by means of experimentation.

Low Power UHF Tag Chip Design (저 전력 UHF 태그 칩 설계)

  • Kwon, Hyuk-Je;Lee, Pyeong-Han;Lee, Chul-Hee;Kim, Chong-Kyo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.47-56
    • /
    • 2008
  • An RFID system comprises a reader and a tag, and this paper focuses on a tag design. A UHF tag is activated by energy supply using electromagnetic waves and energy reflection through impedance mismatching. The tag uses a $0.25{\mu}m$ CMOS process and comprises a digital part executing tag protocols, a 512-bit memory, and an analog part having a rectifier, a modulation/demodulation unit, a clock generator, etc. The total dimension of the tag, including a saw line, is $750{\mu}m*750{\mu}m$ and the power consumption of the tag consumption power is about $17.8{\mu}W$ at a supply voltage of 2V.