• Title/Summary/Keyword: 칩인덕터

Search Result 98, Processing Time 0.027 seconds

A Product of Power Chip Inductor for Slim Mobile Communication Set (휴대용 이동 통신기기의 슬림화를 위한 파워 칩 인덕터의 제품화)

  • Uhm, Jae-Hyun;Cho, Il-Jae;Seo, Jong-Go;Kim, Sung-Il;Kim, Du-Il;Park, Jun-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.891-892
    • /
    • 2006
  • An obstacle is an element for power to small and slim the existing portable communication set. Developed Inductor for Chip-type electric power in needs to solve this. Stack applied Process, and used gap of a magnetic path, and made a height of an element to 1.0T or below, and this development commodity did product for saturation prevention to materials of silver. Saturation current characteristic of Chip-type inductor was low compare with winding-type inductors, but bulk against performance were had superior excellence. Chip-type inductor can raise performance per unit volume compared with the existing inductors at these papers. Therefore, acceleration can get growth of small and slim of a mobile product done, and expect.

  • PDF

Optimized design of the chip inductor and characteristic analysis for RF IC's (마이크로파용 칩 인덕터의 최적화 설계 및 특성분석)

  • Lee, C.K.;Kim, Y.S.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1776-1778
    • /
    • 2000
  • The demands placed on portable wireless communication equipment include low cost, low supply voltage, low power, dissipation, low noise, high frequency of operation, and low distortion. These design requirements cannot be met satisfactorily in many cases without the use of RF inductors. However, implementing the inductor on-chip has been regarded as an impractical task because of excessive substrate capacitance and substantial resistive losses due to metallization and the conductive silicon substrate. Hence, there is a great incentive to design, optimize, and model spiral inductors on Si substrate. So, we analyzed a chip inductors using electromagnetic analysis and established a set of design rules for rectangular spiral inductors.

  • PDF

Design of 77GHz CMOS Low Noise Amplifier with High Gain and Low Noise (고 이득 및 저 잡음 77GHz CMOS 저 잡음 증폭기 설계)

  • Choi, Geun-Ho;Choi, Seong-Kyu;Kim, Cheol-Hwan;Sung, Myeong-U;Rastegar, Habib;Kim, Shin-Gon;Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.753-754
    • /
    • 2014
  • 본 논문에서는 차량 충돌 예방 장거리 레이더용 고 이득 및 저 잡음 77GHz CMOS 저 잡음 증폭기를 제안한다. 이러한 회로는 2볼트 전원전압 및 77GHz의 주파수에서 동작한다. 이러한 회로는 TSMC $0.13{\mu}m$ 혼성신호/고주파 CMOS 공정($f_T/f_{MAX}=120/140GHz$)으로 설계되어 있다. 전체 칩 면적을 줄이기 위해 실제 수동형 인덕터 대신 전송선을 이용하였다. 제안한 회로는 최근 발표된 연구결과에 비해 34.33dB의 가장 높은 전압이득과 5.6dB의 가장 낮은 잡음지수 특성을 보였다.

  • PDF

Design of 77-GHz CMOS Mixer for Long Range Radar Application of Automotive Collision Avoidance (차량 충돌 방지 장거리 레이더용 77-GHz CMOS 믹서 설계)

  • Kim, Shin-Gon;Choi, Seong-Kyu;Kim, Cheol-Hwan;Sung, Myeong-U;Lim, Jae-Hwan;Rastegar, Habib;Choi, Geun-Ho;Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.771-773
    • /
    • 2014
  • 본 논문에서는 장거리 레이더용 차량 충돌 방지 77-GHz CMOS 믹서를 제안한다. 이러한 회로는 2볼트 전원전압에서 동작하며, 저 전압 전원 공급에서도 높은 변환 이득과 낮은 변환 손실 및 낮은 잡음지수를 가지도록 설계되어 있다. 제안한 회로는 TSMC $0.13{\mu}m$ 혼성신호/고주파 CMOS 공정($f_T/f_{MAX}=120/140GHz$)으로 설계하였다. 전체 칩 면적을 줄이기 위해 수동형 인덕터 대신 전송선(Transmission Line) 을 이용하였다. 본 논문에서 설계한 믹서는 약 5.2dB의 우수한 변환이득 특성과 2.1dBm의 우수한 IIP3 특성을 보였다.

  • PDF

Design of Step-down DC-DC Converter using Switched-capacitor for Small-sized Electronics Equipment (소형 전자기기를 위한 스위치드 커패시터 방식의 강압형 DC-DC 변환기 설계)

  • Kwon, Bo-Min;Heo, Yun-Seok;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4984-4990
    • /
    • 2010
  • In this paper, a Step-down CMOS DC-DC Converter using low power switched capacitor method is designed in a 0.5 ${\mu}m$ technology for the integration of devices. Conventional DC-DC converter is used inductor that can store energy in a magnetic field but have low efficiency because power consumption is caused by magnetic flux. And there were problems with size, weight and price to integrate chip. In this paper, a proposed Inductorless step-down CMOS DC-DC converter of low power using SC method is designed in a 0.5um technology to solve these problems. Designed DC-DC converter have 96% power efficiency with 200kHz frequency by using cadence simulation.

A multistandard CMOS mixer using switched inductor (스위칭 인덕터를 이용한 다중 표준용 CMOS 주파수 변환기)

  • Yoo, Sang-Sun;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.78-84
    • /
    • 2007
  • A multistandard direct-conversion mixer for WCDMA, Wibro, and 802.11a/b/g is designed in 0.18 um CMOS technology To support multistandard and to reduce the chip area the switched inductor is used as the matching method. This switched inductor matching network selects the mixer's operation frequency band by turning on or off the switch transistor. Since the performances of mixer and operation frequency can be affected by the parasitic of switch transistor the mixer should be designed with the optimized size of switch to minimize parasitic effects. Proposed mixer is able to achieve return loss less than -13 dB in $2.1\sim2.5GHz$ and $5.1\sim5.9GHz$ bands with the suitable performance to meet requirements of WCDMA, WiBro, and 802.11a/b/g.

Design of a Planar Wideband Microwave Bias-Tee Using Lumped Elements (집중 소자를 이용한 광대역 평판형 마이크로파 바이어스-티의 설계)

  • Jang, Ki-Yeon;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.384-393
    • /
    • 2013
  • In this paper, a design of planar microwave bias-tee using lumped elements was presented. The bias-tee is composed of 2 blocks; DC block and RF choke. For this design of the bias-tee, a wideband capacitor was used for DC block. For a RF choke, a series connection of inductors which have different SRFs is used for a RF choke. In the RF choke, a series connection of resistor and capacitor was added in shunt to eliminate a loss from a series resonance. The designed bias-tee was implemented by using 1608 SMT chip components. The fabricated bias-tee was measured using Anritsu 3680K fixture which enables to remove an effect of a connector. The fabricated bias-tee presented -15 dB of return loss and -1.5 dB insertion loss at 10 MHz~18 GHz.

Characteristic Comparison of C-type and H-type Solenoid RF Chip Inductors (C-type과 H-type 솔레노이드 RF칩 인덕터의 특성 비교)

  • Yun, Eui-Jung;Kim, Jae-Wook;Kim, Yong-Suk;Lee, Tae-Bum;Hong, Chol-Ho;Jung, Young-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1524-1526
    • /
    • 2002
  • 본 논문에서는 $1.62{\times}1.0{\times}0.88mm^3$ 크기의 C-type과 $1.58{\times}0.82{\times}0.94mm^3$ 크기의 H-type RF 칩 인덕터를 제작하고 그들의 고주파 특성을 비교하였다. 본 연구에서는 저손실 $Al_2O_3$ 코아 물질과 직경 $40{\mu}m$의 구리(Cu) 코일을 사용하였다. 권선수를 $2{\sim}14$회로 하여 인덕턴스(L), 품질계수(Q), 임피던스의 크기와 위상, 커패시턴스(C)를 HP4291B Impedance/Material Analyzer로 측정하였다. 10회 권선시 C-type은 55nH, H-type은 67nH, 14회 권선시 C-type은 100nH, H-type은 122nH 정도로 측정되었다. 실험 결과 H-type이 C-type보다 동일 권선수에 대하여 높은 인덕턴스와 높은 자기공진주파수(SRF)를 나타냄을 확인하였다. 또한 최대 품질계수는 두 형태가 거의 비슷한 값($55{\sim}87$)을 가짐을 관찰하였다. 따라서 H-type이 C-type보다 우수한 성질을 나타냄을 알 수 있다.

  • PDF

Variation of Characteristics of Solenoid-Type RF Chip Inductors on Inductor Size (인덕터 크기에 따른 솔레노이드 형 RF 칩 인덕터 특성 변화)

  • Yun, Eui-Jung;Kim, Jae-Wook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.339-343
    • /
    • 2006
  • In this study, the variations of the important characteristics of solenoid-type RF chip inductors utilizing a low-loss A1203 core material on inductor dimensions were investigated systematically. Four dimensions of the chip inductors fabricated in this work were $1.0\times0.5\times0.5mm^3,\;1.5\times1.0\times0.7mm^3,\;2.1\times1.5\times1.0mm^3,\;and\;2.4\times2.0\times1.4mm^3$ and copper (Cu) wire with $40{\mu}m$ diameter was used as the coils. High frequency characteristics of the inductance, quality factor, and impedance of developed inductors as a function of inductor dimensions were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). It was observed that the developed inductors with the number of turns of 6 have the inductance (L) of 12 to 82 nH and exhibit the self-resonant frequency (SRE) of 3.6 to 1.2 GHz. The SRF of inductors decreases with increasing the inductor size while the L increases with the inductor size. The smallest inductors of $1.0\times0.5\times0.5mm^3$ exhibited the L of 12 nH, SRF of 3.6 GHz, and the quality factor of 67 near the frequency of 1.1 GHz. The calculated data predicted the high-frequency data of the L, and Q of the developed inductors well.

Inductor-less 6~18 GHz 7-Bit 28 dB Variable Attenuator Using 0.18 μm CMOS Technology (0.18 μm CMOS 기반 인덕터를 사용하지 않는 6~18 GHz 7-Bit 28 dB 가변 신호 감쇠기)

  • Na, Yun-Sik;Lee, Sanghoon;Kim, Jaeduk;Lee, Wangyoung;Lee, Changhoon;Lee, Sungho;Seo, Munkyo;Lee, Sung Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.60-68
    • /
    • 2016
  • This paper presents a 6~18 GHz 7-bit digital-controlled attenuator. The proposed attenuator is based on switched-T architecture, but no inductor is used for minimum chip size. The designed attenuator was fabricated using $0.18{\mu}m$ CMOS process, and characterized using on-wafer testing setup. The resolution(minimum attenuation step) and the maximum attenuation range of the attenuator were measured to be 0.22 dB and 28 dB, respectively. The measured RMS attenuation error and the RMS phase error for 6~18 GHz were less than 0.26 dB and $3.2^{\circ}$, respectively. The reference state insertion loss was less than 12.4 dB at 6~18 GHz. The measured input and output return losses were better than 9.4 dB over all frequencies and attenuation states. The chip size is $0.11mm^2$ excluding pads.