• Title/Summary/Keyword: 침투재

Search Result 459, Processing Time 0.033 seconds

Effects of Media Breakage on Infiltration Characteristics in Stormwater Management System (강우유출수 처리시설 침투특성에 대한 필터여재 파쇄의 영향)

  • Segismundo, Ezequiel Q.;Koo, Bon-Hong;Kim, Lee-Hyung;Lee, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • For sand and zeolite filter media in stormwater BMPs, media breakage effects on infiltration were investigated. Compaction effort and infiltration force were mainly examined for breakage sources. The 1-D column infiltration tests for un-compacted and compacted media filters were conducted to investigate the breakage effect on infiltration. As a result, the following findings were deduced: 1) particle breakage due to filtration forces was found to be relatively minimal; 2) un-compacted media had lesser amount of crushed particles and permeability fluctuations compared to compacted media; 3) even without the presence of suspended solids in the influent, reduction in permeability was found, which resulted from rearrangement and re-entrainment of media particle itself; 4) only media particle breakage resistance is considered, sand was revealed to have better performance compared to zeolite media.

An Experimental Evaluation on Performance of Surface Protector for Concrete Structures (콘크리트 구조물 표면 보호재의 성능에 대한 실험적 평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.157-163
    • /
    • 2006
  • This study is on the evaluation of double surface protection method using water repellent primer and final top coat to protect concrete. Water repellent agent has been applied on the final top coat to protect concrete. However, to make up for the weakness to the ultraviolet of the water repellent, the work procedure of these protectors is done vice versa. This combination of protectors was compared with existing ones in this study. Even though the final top coat was applied on the water repellent primer, its adhesive strength met to KS F 4936-' 03 with other protectors used in this study. All surface protectors used in this study were excellent in protecting concrete. Especially, in case of applying with final top coat in conjunction with water repellent primer, the resistance against chloride ion penetration and neutralization by $CO_2$ was more efficient than other surface protectors used in this study under this given condition.

The Injection Characteristics and Environmental Effects for Grouting Materials (지반주입재 종류별 주입특성 및 환경적 유해성에 관한 연구)

  • Chun, Byung-Sik;Lee, Jae-Young;Ha, Kwang-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.37-49
    • /
    • 2002
  • In this study, it is performed that mix design of grouting materials which high strength, durability and environmentally safe materials for 2 types of suspension, solution grouting. The laboratory model tests such as permeation, solidification tests are performed to find injection effects by the injection pressure, soil condition. And environmental effects of the grouting materials is analyzed through the heavy-metal leaching tests. From the results, micro cement of suspension grouting superior permeation, solidification injection to Portland cement, and phosphoric acid and sodium hydrogen carbonate in solution grouting were similar to micro cement of suspension grouting. When compare to strength of grouted soils, micro cement of suspension grouting showed high compression strength to Portland cement. While, solution grouting showed very low compression strength comparing suspension grouting. Also, in the heavy-metal leaching tests results were satisfied with the environmental regulation standard for raw grouting materials and grouted soil by 7, 14, 28days curing.

  • PDF

Simple Design of Seepage Flow (침투류 간편설계)

  • Yu, Dong-Hun;Eom, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • After investigating the basic problems of seepage flow, the friction factor equation of power form was developed for solving them. The use of power law for the estimation on friction factor enabled to develop the explicit form of equations without any iteration process being related to various non-dimensional physical numbers. For the derivation of friction factor equations, the existing data were re-analyzed, and the simple method of seepage flow design was devised with the power law equations for the estimation of slope, discharge, and diameter.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of Waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang, Hyo-Jin;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs, to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • 강효진;권시원;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

An Experimental Study about Characteristics of Penetrating Surface Protection Materials to Promote Concrete Structure Durability (콘크리트 구조체 내구성 향상을 위한 침투성 표면 보호재의 특성에 관한 실험적 연구)

  • Lee Jeoung-Yun;Cho Byoung-Young;Kim Young-Keun;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.93-96
    • /
    • 2005
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. Recently, durability decline of concrete construction by environmental pollution is becoming social problem. The durability of high durable structure is declined by carbonate, chloride permeation and deterioration of waterproof performance, etc. This study of penetrating surface protection materials evaluated about carbonation, chloride permeation, waterproof performance, and durability of abrasion, etc. It is profitable in durability that spread penetrating surface protection materials

  • PDF

Numerical Analysis of Infiltration in Permeable Pavement System considering Unsaturated Characteristics (불포화 특성을 고려한 투수성 포장 시스템의 침투성 수치해석)

  • Kim, Seungbae;Ahn, Jaehun;Teodosio, Bertrand;Shin, Hyunjun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.318-328
    • /
    • 2015
  • Effective urban flood reduction and restoration of natural water cycle at present include the application of permeable pavements. The application of permeable pavement addresses urban water cycle and disaster related events which gained attention internationally. However, few researches have been conducted to investigate unsaturated behavior and evaluate the water characteristics curves of these type of pavement materials most especially in the unsaturated state. In this study, first the saturated permeability and the soil-water characteristics curve of a pervious concrete are evaluated based on laboratory tests, and, based on experimental results, the infiltration of permeable pavement system is numerically modelled. In the soil-water characteristics curve of a pervious concrete, the volumetric water content drops very steeply after the air entry value with increasing matric suction. From the finite element analyses, the performance of the permeable pavement when compared to impermeable pavement, confirmed that the whole system effectively delayed and reduced runoff.

Landslide Susceptibility Assessment Considering the Saturation Depth Ratio by Rainfall Change (강우변화에 따른 토층 내 침투깊이를 고려한 산사태위험지수 개발)

  • Kwak, Jae Hwan;Kim, Man-Il;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • Understanding rain infiltration into the ground is an important feature of landslide risk evaluation. In this study, a landslide risk index for the study area is suggested, wherein the result of the landslide risk evaluation, based on the factor of safety (FS), is used. The landslide risk index is a landslide risk prediction index that utilizes the saturated depth ratio of the ground. Based on the landslide risk result for the study area, it was found that the FS was first to decrease. However, it gradually became convergent over the 50-year rainfall intensity study period, a result that is similar to the relationship between the saturated depth ratio and soil thickness. Moreover, saturated depth was also found to be deeper on gentle slopes than steep slopes. As such, the landslide risk index, based on the Inhu-ri study result, is thus suggested. Additionally, the suggested landslide risk index was compared and analyzed against the rainfall intensity of previous landslide experience. Results thus revealed that almost all landslides that occurred were over 0.7, which is the second grade, based on the landslide risk index.