• Title/Summary/Keyword: 침투계수

Search Result 443, Processing Time 0.036 seconds

A Studies on the Evaluation of the Compressive Strength and the Chloride Diffusion Coefficients of the Antibiotic Concrete (항균제 첨가에 따른 콘크리트 강도 및 염분침투평가에 관한 연구)

  • Heo, Gweon;Choi, Hong-Shik;Lee, Si-Woo;An, Ji-Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.433-434
    • /
    • 2009
  • We evaluated the durabillity of the antibiotic concrete by the compressive strength and the chloride ion diffusion coefficients. It would be given as a conclusion that the antibiotics has an influence upon the concrete to increase the strength and decrese the rates of the chloride ion movements.

  • PDF

Evaluation of Infiltration Characteristics of Rainfall in Gneiss Weathered Soil by a Field Monitoring (현장 강우계측을 통한 편마암 풍화토층의 침투특성 평가)

  • Kim, Man-Il;Chae, Byung-Gon;Han, Byung-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.567-576
    • /
    • 2008
  • It is possible to understand rainfall infiltration characteristics by identification of wetting front in the soil. The wetting front by rainfall infiltration has close relationships among soil density, grain size distribution, and permeability coefficient in the soil. The infiltration velocity is a similar concept of permeability coefficient in the soil. In this study, infiltration velocity of rainfall was calculated by a field monitoring of volumetric water contents at the depths of 50 cm and 80 cm below the surface in the gneiss weathered soil. The calculated field infiltration velocity was compared with a permeability coefficient by a laboratory soil test using undisturbed soil samples in the study area. The permeability coefficient of the soil sample is $3.15{\times}10^{-3}cm/sec$, while the field infiltration velocity is $1.87{\times}10^{-3}cm/sec$. It is interpreted that the lower infiltration velocity is induced by complicate condition of porosity and grain size distribution of soil in the field. The rainfall intensity which influences on the volumetric water content and infiltration velocity is more than 20 mm/day resulting in expansion of wetting front in the soil.

Estimation Method of Infiltration Capacity for Assessment of Drainage Capacity II (배수성능 평가를 위한 침투능 산정기법에 관한 연구(II))

  • Jeong, Jisu;Shim, Jeonghoon;Lee, Dong Hyuk;Hwang, Youngcheol;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.23-28
    • /
    • 2020
  • As a result of a suite of laboratory tests undertaken to suggest a rational method for the estimation of infiltration capacity, it is found that the infiltration rate tends to increase as the soil unit weight decreases while it tends to increase as the rainfall intensity increases. Comparative analyses for infiltration curves employing the reduction constant of initial infiltration capacity (α coefficient) that was suggested in this study has reasonably captured the time dependent variation of infiltration capacity. Consequently this study has presented an experimental model for the estimation of infiltration capacity to improve the Horton infiltration capacity curve that has been widely used for estimation of the infiltration capacity and amount of infiltration for its application to sandy soils.

Chloride Ion Penetration Properties of Normal Strength High-Fluidity Concrete Using Lime Stone Powder (석회석 미분말을 활용한 보통강도 고유동 콘크리트의 염소이온 침투특성)

  • Choi, Yun-Wang;Moon, Jae-Heum;Eom, Joo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.160-168
    • /
    • 2010
  • Recently, there are a lot of researches related to the high-fluidity concrete (HFC) with field applications. However, most applications and studies are with concretes with high strength level so there are little studies about durability evaluations such as chloride ion penetration properties with normal strength concrete. Therefore, to evaluate the durability of HFC with normal strength level, this study performed the chloride ion penetration test and observed the micro pore distribution with normal strength HFC which contains limestone powder. Experimental results showed that most micro-pores have diameters between 0.005 to 0.05 ${\mu}m$ with HFCs using limestone powder and the average diameter becomes larger with the increase of limestone powder content. Also, it was shown that, with the increase of the limestone powder content, penetration depth and diffusion coefficient of chloride ion increased and diffusion coefficient had good relationships with compressive strength and average pore diameter with the coefficient of determination over 0.90.

Probabilistic Seepage Analysis Considering the Spatial Variability of Permeability for Layered Soil (투수계수의 공간적 변동성을 고려한 층상지반에 대한 확률론적 침투해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.65-76
    • /
    • 2012
  • In this study, probabilistic analysis of seepage through a two-layered soil foundation was performed. The hydraulic conductivity of soil shows significant spatial variations in different layers because of stratification; further, it varies on a smaller scale within each individual layer. Therefore, the deterministic seepage analysis method was extended to develop a probabilistic approach that accounts for the uncertainties and spatial variation of the hydraulic conductivity in a layered soil profile. Two-dimensional random fields were generated on the basis of the Karhunen-Lo$\grave{e}$ve expansion in a manner consistent with a specified marginal distribution function and an autocorrelation function for each layer. A Monte Carlo simulation was then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty due to the spatial heterogeneity on the seepage behavior of two-layered soil foundation beneath water retaining structure. The results showed that the probabilistic framework can be used to efficiently consider the various flow patterns caused by the spatial variability of the hydraulic conductivity in seepage assessment for a layered soil foundation.

Seepage Face and Reliability Indexes of Anisotropic Homogenous Dam at Steady State Condition (비등방 균질 댐의 정상상태에서의 침투면과 신뢰성지수)

  • Mahmood, Khalid;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.35-42
    • /
    • 2012
  • This paper evaluates the effect of anisotropic conductivity on the seepage face and reliability index of an homogeneous dam with and without toe drain. The analysis are conducted under steady state saturated-unsaturated seepage condition using finite element method. Various anisotropic conductivity ratios were interpreted under such conditions as the vertical conductivity is reduced while the horizon conductivity is fixed. The shear strength of soil is defined by the modified Mohr-Coulomb failure criterion. The analysis results demonstrate that the length of seepage face and reliability index at the downstream and upstream of the dam increase with an increasing anisotropic ratio. These results of the seepage face and reliability index, however, depend on the total head difference between the upstream slope and downstream toe. The difference in seepage face and reliability index is attributed to the different equipotential head with different anisotropic ratios of the dam material.

Estimation Method of Infiltration Capacity for Assessment of Drainage Capacity I (배수성능 평가를 위한 침투능 산정기법에 관한 연구 I)

  • Jeong, Jisu;Shim, Jeonghoon;Hwang, Youngcheol;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.49-55
    • /
    • 2019
  • Slope failure analysis entails proper understanding of various factors as well as the characteristics of ground conditions, which are difficult to achieve due to technological limits. Despite a number of past studies to clarify possible factors triggering slope failures, the impact of rainfall characteristics and infiltration rate, which are the key to estimation of slope stability in wet condition, on slope failures still remains unclear. This study has estimated permeability against various unit weights of soil based on constant head permeability tests using Jumunjin standard silica sand. One dimensional infiltration tests were conducted to estimate the infiltration capacity and the amount of infiltration taking into account the permeability and rainfall intensity. The applicability of existing empirical equations for the estimation of infiltration to granular soils was verified on the basis of the test results.

Effect of Compressive Loading on the Chloride Penetration of Concrete Mixed with Granulated Blast Furnace Slag (고로슬래그미분말을 혼입한 콘크리트의 염분침투성에 미치는 압축하중의 영향)

  • Kim, Dong-Hun;Lim, Nam-Gi;Horiguchi, Takashi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.71-78
    • /
    • 2009
  • The analysis of the effect of loading on chloride penetration into concrete is very important. In this study, we confirmed that the chloride penetration rates for plain and BFS concrete were increased by 47% and 89% under compressive stress, respectively. The diffusion coefficient of BFS concrete was lower than for conventional concrete with no BFS, no loads, and under stressed states. Therefore, BFS substitution plays an important role in the repression of chloride penetration even under compressive stress. Under compressive stress,the diffusion coefficient for BFS concrete was higher with increasing stress, and this was also the case for plain concrete. However, BFS concrete was strongly influenced by compressive stress in comparison to plain concrete. We investigated the effect of the difference of specific surfaces on the diffusion coefficient. As a result, the larger specific surface of BFS exhibited a lower diffusion coefficient. This tendency was most pronounced under the high stress conditions.

Analysis of Effective Stress Parameter on Partially Saturated Soil via Hydro-Mechanical Behaviors (부분포화토의 침투와 흙의 거동에 따른 유효응력 계수 분석)

  • Kim, Jae-Hong;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.117-126
    • /
    • 2011
  • Based on thermodynamics, the mathematical framework governing the hydro-mechanical behavior of partially saturated soil is derived by using balance equations, and the numerical analysis through implementation of various effective stress definitions is performed. Effective stress on partially saturated soil describes the soil strength which is presented by the relationship between water content and soil suction. For the estimation of hydro-mechanical behavior on partially saturated soil, effective stress parameter ${\chi}$ defined from various literatures is especially analyzed to understand the conditions of constitutive equations regarding residual saturation and displacement of soil. As a result, effective stress parameter ${\chi}$ has an influence on the variation of matric suction in soil with an external load and seepage. However it was found that the effect of each parameter ${\chi}$ varies with residual degree of saturation, and that of each parameter ${\chi}$ decreased with decrease in displacement of soil caused by an external load.

Analysis of Flood Control Effects of Infiltration Gutter by Field Hydraulic Experiment (현장수리실험을 통한 투수성 침투측구의 치수효과 분석)

  • Lee, Chi-Hun;Lee, Hoon;Ahn, Jae-Chan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.171-171
    • /
    • 2012
  • 최근 기후변화에 따른 집중호우로 서울을 비롯한 도시의 대규모 침수사태가 빈번히 발생하고 있다. 이러한 재난의 원인으로는 기록적인 집중호우의 영향도 컸지만 도시개발로 인한 불투수성 면적의 증가로 인하여 초기 우수배재가 이루어지지 않은 부분이 대형피해의 원인이 되었다. 본 연구에서는 침투측구의 치수효과분석을 위하여 선행강우 조건 및 50, 100, 150mm/hr의 3가지 강우사상에 대하여 총 23회에 걸쳐 침투측구에 대한 수리실험을 완료하였고, 침투기능이 없는 일반 측구에 대한 실험도 침투측구 수리실험 조건과 동일하게 수행하여 치수효과를 비교 분석하였다. 침투 측구의 치수효과는 총강우량에 대한 총침투량, 총유출량, 유출시작시간, 종기침투능 및 종기침투능에 도달하는 시간 등을 산정하고 선행강우 조건별로 비교 분석하였다. 수리실험결과 가장 작은 강우강도인 50mm/hr 사상에서 측면에 설치된 침투측구의 치수효과가 가장 크게 나타나는 것으로 분석되어. 침투측구의 경우 유출은 선행강우 조건이 없을 경우 일반 측구의 유출발생시간보다 약 53분 후에 발생하였으며, 선행강우 조건이 있을 경우 약 40분후에 발생하였다. 분석된 결과를 토대로 투수성 침투측구에 대한 투수계수별 CN값을 산정하여 침투측구의 실무 적용방안을 논의하였으며, 본 연구의 결과를 이용하여 풍수해저감을 위한 저감대책을 수립하고, 집중호우에 의해 발생되는 초기우수의 저류에 대한 정량적인 효과분석을 기대할 수 있을 것으로 판단된다.

  • PDF