• Title/Summary/Keyword: 침식방지

Search Result 206, Processing Time 0.024 seconds

Selection of Portland Cement for Prevention of Sulfate Attack-Part 1 Sodium Sulfate Attack (황산염침식 방지를 위한 포틀랜드시멘트의 선정-Part 1 황산나트륨 침식)

  • Kim, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.441-447
    • /
    • 2009
  • This paper presents a detailed experimental study on the sulfate resistance of specimens made with portland cement exposed to sulfate attack. The mortar specimens were immersed in a 5% sodium sulfate solution for 360 days and regularly monitored for visual damage, compressive strength loss and expansion. In addition, at the end of 360 days, the products of sulfate attack and the mechanism of attack were investigated through X-ray diffraction, TG&DSC and scanning electron microscopy. The test results indicated that the sulfate deterioration data was ordinary portland cement > sulfate resistance portland cement > low heat portland cement. The microstructural studies indicated that the main reaction product of deterioration of the mortar specimens was the formation of ettringite, gypsum and thaumasite due to sulfate attack. For portland cement matrices, a low heat cement matrix containing the lowest C3A and silicate ratio (C/S) was beneficient against the sulfate attack.

A Study on Soil Improvement Agent for Rainfall-Induced Erosion on the Soil Slope (흙 사면의 강우 침식보강을 위한 토양개량제 개발에 관한 연구)

  • Kang, Dae-Heung;Kim, Young-Suk;Hwang, In-Taek;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • With climate change, debris flow has been increasing due to the collapse and erosion of shallow slopes caused by extreme rainfall. It is preferred to an economical and eco-friendly method rather than reinforcement of soil slopes with the earth anchor or nailing method. In this study, a soil improvement agent was developed by utilizing insitu soil, leaf mold, and used harbal medicine to help sufficient vegetation. In addition, to prevent surface erosion, shear strength of the soil was increased by using micro cement and hemihydrate gypsum as additives. The optimum mix ratio of the mixture is determined by increasing the shear strength by checking the erosion progress of the ground surface layer due to rainfall through an laboratory test. The safety factor of soil slope has been improved on the slope surface reinforced by the improvement agent, and the strength of erosion has been increased, making it efficient to cope with heavy rain during wet season.

Effects of Grain Size on Relationship between Microtopographic Roughness and Soil Erosion Rate (토양 입경이 미세지형의 거칠기와 토양침식률 간의 관계에 미치는 영향)

  • Soyoung Kim;Dae-Hong Kim;Tae-young Sohn
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.216-216
    • /
    • 2023
  • 가속적인 토양침식은 토지의 환경 및 생태계의 지속성에 부정적 영향을 미치므로, 그 양을 예측하여 토양침식을 방지하는 것은 중요하다. 이에 따라 식생, 지형, 토양의 입도분포 등과 같은 토양침식에 영향을 미치는 인자에 관한 연구가 꾸준히 이뤄지고 있다. 특히 자연 지형에서 보편적으로 나타나는 'cm' 규모의 미세지형이 토양침식에 미치는 영향을 분석한 기존 연구 결과를 살펴보면, 유역 출구 지점에서 관측된 총 유사유출량에만 근거하고 있을 뿐 아니라 토양침식에 미치는 미세지형의 영향에 관한 상반된 결과가 혼재하고 있다. 이는 유역의 토양침식과정에 대한 이해도와 토양침식량에 대한 예측 정확도를 저하시킬 우려가 있으므로 미세지형이 토양침식에 미치는 영향을 유역 전반에 걸쳐 살펴본 후, 명확하게 하는 것이 필요하다. 본 연구에서는 동역학파 모형에 기반한 침식 모형을 이용하여 미세지형에서의 강우-유출 및 토사 입자별 침식 및 유출 현상을 수치적으로 모의하였다. 모의 결과에 따르면, 동일한 강우-유출 조건에서도 미세지형의 거칠기에 따라 유역의 토양침식량 및 침식 특성이 달라질 수 있으며, 토양 입경이 미세지형의 거칠기에 따른 유사유출량의 증감 현상을 결정하는 데에 있어 중요한 요소로 작용함을 제시하였다. 미세지형이 거칠어짐에 따라 비교적 굵은 입자인 모래 함량이 높은 지반에서는 토양침식률이 감소하였으나 이와 대조적으로 미세토사 함량이 높은 지반에서는 토양침식률이 증가하였다. 이는 미세지형이 유역 전반에 걸쳐 입경에 따른 토사의 부상, 이류 및 퇴적 특성에 영향을 미쳐, 유역의 유사 분급 및 장갑화 현상에 깊게 관여하였기 때문이다. 본 연구를 통해 토양유실에 미치는 미세지형의 영향에 관한 상반된 연구 결과를 미세지형과 토양 입경분포의 상호작용으로 설명할 수 있다. 따라서, 본 연구는 유역 내 미세지형적 거칠기 입경분포에 대한 정확한 정보에 기반하여 토양의 유실량 및 침식량을 산정해야 함을 강조한다.

  • PDF

Experimental Study on Effectiveness of Wave Reduction and Prevention Erosion of Nourishment Sand Using the Cell Group (Cell Group을 이용한 파랑저감 및 양빈사 유실방지에 관한 실험적 연구)

  • Park, Sang Kil;Park, Hong Bum;Kim, Young Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, a submerged breakwater has been installing to prevent the erosion of shoreline everywhere. Artificially submerged breakwater is made to minimize the loss of nourishment sand beach erosion. For this reason, it has been indiscriminately constructed submerged breakwater that is planned in the country throughout. However, maintenance purposes to keep the shoreline of the beach is a method that is quite a few problems. There are also disadvantages such as expensive construction costs, ocean space utilization, water pollution and shoreline modification. In addition, person of utilizing the space of the ocean leisure does not like that because of the disconnection of ocean space. The beaches such as Gwanganri are artificially supplying nourishment sand to maintain the beach. The flexible construction method refers to a structure that is installed as a flexible material instead of submerged breakwater to prevent the loss of nourishment sand. In order to develop a new method to mitigate shoreline erosion, this study was carried out a hydraulic model experiment by installing a cell group as an example of the flexible method. Namely, in order to prevent the loss of nourishment sand, we decided to develop a new method that can mitigate the degree of beaches erosion by using cell group instead of submerged breakwater. In the two dimensional fixed hydraulic experiment, was carried out the effect reducing of wave height and the rate of low reflection due to the installation of the cell group. In movable bed experiment, the capture rate of the nourishment sand and the erosion prevention rate of the nourishment sand was performed for stability of shoreline. Therefore, according to the results of the hydraulic tests, it was possible to maintain the stable beaches due to installing the cell group on the erosion beaches, due to the effect of reducing wave height, the low reflection, the erosion prevention rate of nourishment sand, the high capture rate of nourishment sand.

Development and Verification of Eco-hybrid Rolling Mat for Preventing Bank Erosion Based on Large-scale Experiments (실규모 하천 실험을 통한 하안침식 방지 Eco-hybrid 롤링매트 공법 개발 및 검증)

  • Ji, Un;Jang, Eun-Kyung;Ahn, Myeonghui;Kim, Won
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.217-226
    • /
    • 2019
  • Optimum engineering methods for bank protection were classified based on steepness of bank slope and an existence of waterfront facility in the floodplain, and a new concept of eco-hybrid rolling mat method which could be applicable for the unfitted cases with previously developed countermeasures was suggested in this study. The eco-hybrid rolling mat method can be constructed while maintaining the river environment and ecosystem that does not interfere with the ground and slopes, when bank erosion occurs, it is an economical and efficient construction method that can protect the revetment and the bank slope immediately. The developed eco-hybrid rolling mat method was verified for the designed structure, system, function and effect based on large-scale river experiments including field exposure and decomposition test. As a result, the normal operation and effect of the rolling mat ted under low and high velocity conditions were confirmed with respect to bank protection. The effect of bank erosion prevention was quantitatively validated by sediment concentration monitoring and analysis, and the product specification of the eco-hybrid rolling mat was presented based on the standardized mat applied in real-scale tests.

Improvement for Marine Environmental Impact Assessment on the Coastal Development Project Type (연안개발사업 유형에 따른 해양환경영향평가 개선방안)

  • Kim, In-Cheol;Jeon, Kyeong-Am;Kim, Gui-Young;Eom, Ki-Hyuk;Kim, Young-Tae;Choi, Bo-Ram
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • This paper suggested the improvement of marine environmental impact assessment of different types of project by analyzing the consultation on the coastal area utilization(133cases) of the coastal development project for 4years(2010-2013). According to the analysis results, the erosion protection project needs to precede the accurate analysis of erosion reasons, predict exactly possible problems and establish the systematic system to verify the effect of erosion protection by monitoring after projects. The construction projects of revetments and coastal roads have to require to sublate, examine the reliability in structures, give consideration to the problems of coastal erosion by increase of reflected waves. In addition, flooding protection projects have got to require to select the waves for evaluation items in conjunction with the effects of abnormal waves. furthermore, waterfront construction projects need to establish comprehensive and methodical space plans and reinforce the review to conserve the natural environment and conduct nature-friendly development. There are many problems inherently related to coastal development Project. To these problems, however, it is required to support the project on the side of the legislation and conduct additional studies reflecting the characteristics by sea areas and projects.

Experimental Study on Bank Protection System using Fabric Foam (친환경 섬유대공 하천호안공법의 현장계측 연구)

  • Kim, Jin-Man;Cho, Sam-Deok;Choi, Bong-Hyuck;Kwak, Ki-Seok;Woo, Hyo-Seop;Ahn, Hong-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.3-11
    • /
    • 2004
  • Fabric Foam systems provide a variety of flexible bank protection for open channels and hydrulic structures. The structural performance and durability of conventional bank protection materials such as concrete, gravel, riprap and vegetation can be significantly improved by confining the materials within the cells of Fabric Foam system. This paper presents the results of field and laboratory tests carried out to evaluate the performance of new Fabric Foam System as a Bank Protection. The results of the tests confirmed effect of Fabric Foam System in Bank Protection.

  • PDF

An Experimental Study on the Effect of Erosion Control by Multi-Cylinder Piles (다원주 군파일의 침식방지효과에 관한 실험적 연구)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Lee, Han-Seung;Jeong, Seok-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Environmental and safety problems are one of the most important factors in designing coastal wave control structures and maintaining facilities in coastal zone. This study suggests the multi-cylinder piles as a profitable structure for preserving coastal zone as well as controlling the wave effectively. The hydraulic model experiment was performed to investigate the effect of erosion control of the structure. The experimental study was carried out to research the effect of erosion control in the coastal zone for existing a concrete wave breaker and the structure with multi-cylinder piles placing at the same location. As a result multi-cylinder piles reduced erosion at each sides of structure and occured sedimetation at front of structure.