• Title/Summary/Keyword: 친환경적 개발

Search Result 598, Processing Time 0.029 seconds

Effects of Tool Materials on Corrosion Properties of Friction Stir Welded 409 Stainless steel (툴 재료가 마찰교반접합된 409 스테인리스강의 부식 특성에 미치는 영향)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Song, Keun;Yeon, Yun-Mo;Lee, Won-Bae;Lee, Jong-Bong;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.42-42
    • /
    • 2009
  • 마찰교반접합 (Friction Stir Welding)은 1991년 영국 TWI에서 개발된 접합 법으로서 회전하는 툴이 재료내부에 삽입되면 툴과 재료사이에서 발생하는 마찰열에 의하여 온도가 상승하게 되어 재료는 연화되고, 이러한 재료 내부에서 회전하는 툴이 이동하게 되면 재료 내부는 기계적 교반에 의해 소성변형이 일어남과 동시에 접합이 이루어진다. 마찰교반접합은 동적 재결정에 의한 접합부의 미세한 결정립 형성으로 인하여 기계적 특성이 향상되며 보호 가스가 필요 없어 친환경적임과 동시에 용융 용접 법에 비해 접합 시 에너지 소모가 적으며 또한 접합 후 접합부에서의 변형이 상대적으로 적다는 장점이 있다. 이러한 장점을 가진 마찰교반접합은 알루미늄 합금, 마그네슘 합금 그리고 동 합금과 같은 저 융점 비철재료에 많은 연구와 적용 사례들이 있어왔다. 하지만 최근에는 일반 탄소강, 연강, 오스테나이트계 스테인리스강, 니켈 합금, 티타늄 합금과 같은 고융점 재료에도 연구 및 적용이 진행되고 있는 추세이다. 페라이트계 스테인리스강은 가격이 비싼 Ni을 함유하지 않아 오스테나이트계 스테인리스강에 비하여 강재의 가격은 낮으면서도 고온특성 및 내식성이 우수하여 건축용, 자동차 배기계용으로 널리 사용되고 있다. 하지만 이런 장점을 가진 페라이트계 스테인리스강을 기존의 용융 용접 법으로 접합 시 용접부 및 열영향부에서의 결정립의 조대화로 인한 인성 및 연성이 저하되며, 특히 예민화된 열영향부 입계 내에 Cr 탄화물이 석출되어 입계주변에 Cr 결핍 층을 형성되어 입계부식이 발생되는 문제점이 발생된다. 본 연구에서는 마찰교반접합을 이용하여 두께 3mm의 409 스테인리스강에 대해 맞대기 접합을 실시하였다. 접합 변수를 툴의 재료 (WC-12wt%Co, $Si_3N_4$)로 하여 접합을 실시하였고 접합 후 외관상태 점검, 광학 현미경과 주사 전자 현미경을 통하여 미세조직을 관찰하였으며 황산-황산동 부식 시험을 실시하여 접합부의 부식 특성을 평가하였다.

  • PDF

Establishment of Rice Bakanae Disease Management Using Slightly Acidic Hypochlorous Acid Water (미산성 차아염소산수를 이용한 벼키다리 병 방제)

  • Goo, Sung-Geun;Koo, Jachoon
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.178-185
    • /
    • 2020
  • Rice bakanae is a typical seed-borne and seed-transmitted disease caused by infection by Fusarium fujikuroi. Seed disinfection using chemical fungicides (such as benomyl and prochloraz) is most effective in controlling the disease, but the emergence of fungicide-resistant strains has recently been increasing. Slightly acidic hypochlorous acid water (SAHW) is a safe and environmentally friendly disinfectant that has a potent and broad spectrum of antimicrobial activity against viruses, bacteria, and fungi. In this study, we aimed to investigate the effectiveness of SAHW against F. fujikuroi strains, including chemical fungicide-resistant strains, as an alternative to conventional chemical fungicides in the management of bakanae disease. SAHW showed strong but similar levels of antifungal activity among the F. fujikuroi strains with a minimum inhibitory concentration (MIC90) of 5±2.5 ppm of free available chlorine (FAC). In addition, F. fujikuroi cells lost viability completely within 5 min of SAHW treatment due to the lethal damage to cell integrity. When the rice seeds infected by F. fujikuroi were treated with SAHW containing 20±10 ppm of FAC for 12 hr, the efficiencies of seed disinfection and disease control were 95-98% and 90.1-92.6%, respectively. Altogether, our data suggest that SAHW is an effective compound for controlling rice bakanae disease.

Construction of Environmental Friendly Special-Purpose Ship for the Removal of Blue-green Algae (친환경적 녹조 제거용 특수선박 건조)

  • Shin, Jae-Ki;Yi, Hye-Suk;Jeong, Sun-A;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.404-406
    • /
    • 2009
  • This study note wished to introduce special-purpose ship for algae removal that is developed by core technology of our country. The ship is consisted of main frame and adjuvant that can attach and detach as cross (+) shape of a character. The characteristics of ship are super light weight and low draft. That is consisted of four devices as suction, collection, filtration and recovering units. Among these, filtration used screen filter (mesh size 30 ${\mu}m$). Also, can separate and remove water and algae by compression air participle notion. Percentage of moisture content of concentrated algal particle was 85%. Water parted with algae finally is exhausted to water area. Removal efficiency that compare by chlorophyll-$\alpha$ concentration was about 57% (inflow: 83.2 ${\mu}g\;L^{-1}$, outflow: 35.8 $[\mu}g\;L^{-1}$) without physical and chemical pretreatment. Forward, need to achieve effect test in various conditions (algal biomass, flow etc.) for efficiency and technological elevation of exclusion device. We wished to contribute in presuppression system construction of massive algal development that manage blue-green algae occurrence area effectively, and prevents spread as lower part of reservoir.

Environmental Flow Assesment for Sustainable River Management in Guem River (지속가능한 하천관리를 위한 금강의 환경유량 산정)

  • Kim, Jeong-Kon;Kim, Gee-Hyoung;Ko, Ick-Hwan;Park, Sang-Young;Seo, Jin-Won;Jang, Chang-Lae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.622-627
    • /
    • 2007
  • 최근 하천의 모습은 이수 및 치수를 위해 설치된 수공구조물과 각종 오염원으로 인한 수질악화, 산업화 및 도시화에 따른 물순환시스템의 변화로 하천의 물순환 시스템이 바뀌게 되고 하천을 찾는 시민들의 환경의식 미성숙으로 인한 직간접적인 하천오염 활동이 이루어지고 있다. 하천에 대한 이러한 변화는 수질, 수량 및 하천의 구조적 측면에서 하천 생태계에 많은 영향을 끼치고 있다. 따라서 하천의 정상적인 기능을 회복시켜 하천 생태계 보전과 환경적으로 안정된 하천 조성이 이루어지도록 하기 위해서는 하천을 보다 자연스럽고 지속적으로 관리하기 위한 효율적인 환경유량의 관리가 필요하다. 하천의 전체적인 생태시스템을 고려한 환경유량의 관리를 위해서는 기존 환경유량의 개념, 산정방법 등 현황을 분석하고 하천 생태계에 영향을 미치는 인자들에 대한 관리방안을 마련하는 것이 중요하다. 본 연구의 목표는 하천생태계에 대한 영향인자의 장단점을 분석하고 이들이 어느 정도의 영향을 미치고 있는지를 정량적으로 파악함으로써 사회적으로 요구되는 환경유량을 산정할 때 어류 및 식생 등 하천의 생태계와 하천의 수량 및 수질, 하천의 수리구조물 등 하천의 구조적인 변화를 고려할 수 있는 방안을 마련하는 것이다. 이를 위하여 우선적으로 국외 선진국에서 활용되고 있는 다학제간 전문가 그룹(Multi-disciplinary Expert Team, MET)을 통해 하천 생태시스템을 분석하고 환경유량 산정 모형을 활용하여 저수지 댐과 연계 운영함으로써 어류 및 식생 등 생태서식처와 사회환경 개선에 필요한 유량을 유지할 수 있는 방안을 적용하고자 한다. 본 연구에서는 대상유역인 금강유역에 대해 환경유량을 산정하기 위한 개념모형을 구축하였다. 개념모형은 대청댐 건설 이전, 대청댐 건설이후${\sim}$용담댐 건설 이전, 대청댐과 용담댐 건설 이후 등 3개의 시나리오를 통해 하도 및 수변공간과 유량변화에 따른 유황분석 등을 통해 손실된 생태시스템을 정량화하여 궁극적으로는 복원을 위한 대응방안을 마련하도록 할 수 있도록 구축되었다. 또한 댐으로 인한 하류지역의 영향범위 및 하천생태계에 미친 영향을 감소하기 위하여 적절한 환경유량을 산정하기 위한 것이다. 구축된 개념모형을 바탕으로, 금강유역에 대한 기초적인 수문, 하천특성, 현장조사 등을 실시하였다. 향후에는 본 연구결과를 기초로 하여 환경유량을 산정하기 위한 모형을 개발하고 산정된 환경유량을 확보 및 관리하기 위한 방안과 친환경적인 댐 운영방안을 마련하게 될 것이다.

  • PDF

Biodegradation of aromatic dyes and bisphenol A by Trametes hirsuta (Wulfen) Pilat (흰구름버섯에 의한 방향족 염료와 비스페놀 A의 분해)

  • Im, Kyung-Hoan;Baek, Seung-A;Choi, Jae-hyuk;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Trametes hirsuta, a white rot fungus, exhibits the ability to degrade synthetic aromatic dyes such as congo red (CR), methylene blue (MB), crystal violet (CV), and remazol brilliant blue R (RBBR). The mycelia of T. hirsuta degraded RBBR and CR more efficiently than CV and MB in the PDB liquid medium (supplemented with 0.01% 4 aromatic dyes). In these mycelia the activities of three ligninolytic enzymes-laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP)-were observed. Among these, laccase was identified to be the major enzyme responsible for the degradation of the four aromatic dyes. The degradation of bisphenol A was also investigated by culturing the mycelia of T. hirsuta in YMG medium supplemented with 100 ppm bisphenol A. The mycelia of T. hirsuta were found to degrade bisphenol A by 71.3, 95.3, and 100 % within incubation periods of 12, 24, and 36 hr, respectively. These mycelia also showed ligninolytic enzyme-like activities including those similar to laccase, MnP, and LiP. Therefore, these results indicate that T. hirsuta could emerge as a potential tool for the remediation of environmental contamination by aromatic dyes and bisphenol A.

Studies on Expanding Application for the Recycling of Coal Ash in Domestic (국내 석탄재 재활용 확대 방안 연구)

  • Cho, Hanna;Maeng, Jun-Ho;Kim, Eun-young
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.563-573
    • /
    • 2017
  • Coal ash is generated from coal-fired thermal power plants every year. The remaining quantity of coal ash ends up in the landfills except for the recycled portion, and the existing ash pond capacity is limited almost. Currently, the difficulties are faced in building a new ash treatment plant because of the concerns about the environmental impacts of landfills at individual plant facilities. In terms of minimizing the environmental impact, the recycling and effective uses of coal ash are recognized as urgent issues to be challenged. Accordingly, this study examines the obstacles in expanding the recycling of the coal ash in South Korea and proposes solutions based on the case study analysis. The analysis results are as follows: 1) specific recycling guidelines and standards are required to be established in accordance with the contact medium (soil, ground water, surface water and sea water) and the chemical. 2) by providing the recognition environmentally safe in recycling the coal ash, transparency in establishing the planning stages and active communication with the community through promotion and research are essentially needed. 3) practical support system is required to encourage the power plant companies to use the coal ash as beneficial use.

A Study on the Property Changes of Rigid Polyurethane Foams by Nucleating Effects of PFA and MWCNT (PFA 및 MWCNT의 기핵효과에 의한 경질 폴리우레탄 폼의 물성 변화에 대한 연구)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2945-2950
    • /
    • 2015
  • While perfluoroalkane (PFA), a liquid state nucleating agent for a rigid polyurethane foam (RPUF) to enhance the thermal insulation property, has the excellent nucleating characteristics, it is very expensive as well as environmentally harmful due to the fluoride compound. Many researches, therefore, have been performed to develop the alternative nucleating agents to replace PFA. In the present work, a multi-wall carbon nanotube (MWCNT) was used as a sloid state nucleating agent, and thereby the effects on the property changes of the RPUF were carried out. Average cell size decreased from 165.6 for base RPUF to $162.9{\mu}m$ and cell uniformity was also enhanced, showing the standard cell-size deviation of 45.6 and 35.2, respectively. While k-factor of base PUF was $0.01763kcal/m.hr.^{\circ}C$, that of the sample with 0.01 phr MWCNT showed 1.02% reduced value of $0.01745kcal/m.hr.^{\circ}C$. Though the compressive yield stress is nearly the same as $0.030{\times}105Pa$ for the both samples, initial modulus of the sample with 0.01 phr MWCNT was higher than that of base sample. it was considered as the results that small amount of MWCNT could play a sufficient role as the effective nucleating agent for RPUF, showing that an echo-friendly RPUF with reduced-cost could be fabricated, which has an enhanced thermal and mechanical properties.

A Study on the Microflora of Gapcheon, Daejeon in Korea (갑천의 미소생물상에 관한 연구)

  • 심정기
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.347-354
    • /
    • 2002
  • Near the Gapcheon, a new suburban city will be developed by the Ministry of Construction and Transportation, and a intracity highway will be constructed by Daejeon Metropolitan City. By these new plans, rapid disruption of environmental conditions near the Gapcheon will be anticipated. The new construction of the city and highway will raise a problem of environmental pollution and disruption of natural status of this area, and will have an adverse influence to environment of the Dunsan area and an industrial complex which are located at the downstream of the Gapcheon. This re-search was conducted on the Gapcheon area, Daejeon (Gasuwongyo to Wonchongyo) from August, 2001 to June, 2002 years. Microorganisms of Gapcheon are three forms, 17 varieties, 105 species, 58 geneva, 31 families, and totalled 125 taxa. And zooidal micro-organisms, one varieties, 16 species, 12 genera, eight families, and totalled 17 taxa. Hydrogen ion concentration of the stream is ranged from 7.10 to 9.98 with great variation, especially high below bridges of Gasuwongyo and Mannyeongyo. The clean water quality of the stream is still maintained very well due to dense distribution of diverse aqua-tic and swamp plants. Furthermore, species diversity of microorganisms in the stream does help to purify the quality of water, and to keep the health of the Gapcheon as natural. More environmentally controlled and continuous efforts to keep the Gapcheon in a natural status and to purify the quality of water should be made by Daejeon Metropolitan City Officials who ave now spending about 6G,5()0 million won for overall conservation plans of the stream (from 1999 to 2003 years).

Treatment of Nickel Ions in Water Phase Using Biochar Prepared from Liriodendron tulipifera L. (백합나무 유래 biochar를 이용한 수중에서 니켈 이온의 처리)

  • Choi, Suk Soon;Choi, Jung Hoon;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.529-533
    • /
    • 2017
  • In this work, a new type of biosorbent was prepared from the biochar of Liriodendron tulipifera L. by adding an activation process using water vapor. By using the biosorbent, the removal characteristics of nikel ions in the water phase were investigated. When the equilibrium experiments to remove both 5 and 10 mg/L of nikel ions were performed, the adsorption amount of nickel ions was 4.2 and 5.4 mg/g, respectively. Also, the optimal initial pH was 6 to increase the removal efficiency with respect to two different nickel concentrations of 5 and 10 mg/L. To enhance the removal efficiency of 10 mg/L of nikel ions, a chemical treatment using critic acid was applied for the biosorbent. In addition, 100% removal efficiency was observed for 10 mg/L of nikel ions when the experiment was conducted for 2 h using the modified biosorbent treated by 4 M of critic acid. The results of desorption experiment to recover nikel ions indicated that 0.1 M of nitrilotriacetic acid (NTA) was selected as the optimal desorption agent. Consequently, these experimental results could be employed as an economical and environmentally friendly technology for the development of nickel removal processes.

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.