Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.2.178

Establishment of Rice Bakanae Disease Management Using Slightly Acidic Hypochlorous Acid Water  

Goo, Sung-Geun (Division of Science Education and the Institute of Fusion Science, Jeonbuk National University)
Koo, Jachoon (Division of Science Education and the Institute of Fusion Science, Jeonbuk National University)
Publication Information
Journal of Life Science / v.30, no.2, 2020 , pp. 178-185 More about this Journal
Abstract
Rice bakanae is a typical seed-borne and seed-transmitted disease caused by infection by Fusarium fujikuroi. Seed disinfection using chemical fungicides (such as benomyl and prochloraz) is most effective in controlling the disease, but the emergence of fungicide-resistant strains has recently been increasing. Slightly acidic hypochlorous acid water (SAHW) is a safe and environmentally friendly disinfectant that has a potent and broad spectrum of antimicrobial activity against viruses, bacteria, and fungi. In this study, we aimed to investigate the effectiveness of SAHW against F. fujikuroi strains, including chemical fungicide-resistant strains, as an alternative to conventional chemical fungicides in the management of bakanae disease. SAHW showed strong but similar levels of antifungal activity among the F. fujikuroi strains with a minimum inhibitory concentration (MIC90) of 5±2.5 ppm of free available chlorine (FAC). In addition, F. fujikuroi cells lost viability completely within 5 min of SAHW treatment due to the lethal damage to cell integrity. When the rice seeds infected by F. fujikuroi were treated with SAHW containing 20±10 ppm of FAC for 12 hr, the efficiencies of seed disinfection and disease control were 95-98% and 90.1-92.6%, respectively. Altogether, our data suggest that SAHW is an effective compound for controlling rice bakanae disease.
Keywords
Atifungal activity; bakanae disease; Fusarium fujikuroi; slightly acidic hypochlorous acid water (SAHW);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Albrich, J. M., McCarthy, C. A. and Hurst, J. K. 1981. Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc. Natl. Acad. Sci. USA. 78, 210-214.   DOI
2 Al-Haq, M. I., Sugiyama, J. and Isobe, S. 2005. Applications of electrolyzed water in agriculture & food industries. Food Sci. Technol. Res. 11, 135-150.   DOI
3 Carter, L. L. A., Leslie, J. F. and Webster, R. K. 2008. Population structure of Fusarium fujikuroi from California rice and water grass. Phytopathology 98, 992-998.   DOI
4 Choi, H. W., Hong, S. K., Kim, W. G., Lee S. Y. and Han, S. S. 2012. New specific primer useful for detecting Fusarium fujikuroi in rice comprises specific base pair sequence. Korea patent 2012045917-A.
5 Choi, Y., Jung, B., Li, T. and Lee, J. 2017. Identification of genes related to fungicide resistance in Fusarium fujikuroi. Micobiol. 45, 101-104.   DOI
6 Cui, X., Shang, Y., Shi, Z., Xin, H. and Cao, W. 2009. Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. J. Food Eng. 91, 582-586.   DOI
7 Fukuzaki, S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol. Sci. 11, 147-157.   DOI
8 Gunaydin, M., Esen, S., Karadag, A., Unal, N., Yanik, K., Odabasi, H. and Birinci, A. 2014. In vitro antimicrobial activity of Medilox(R) super-oxidized water. Ann. Clin. Microbiol. Antimicrob. 13, 29.   DOI
9 Hossain, M. T., Khan, A., Chung, E. J., Rashid, M. H., Chung, Y. R. 2016. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol. J. 32, 228-241.   DOI
10 Ishihara, M., Murakami, K., Fukuda, K., Nakamura, S., Kuwabara, Hattori, H., Fujita, M., Kiyosawa, T. and Yokoe, H. 2017. Stability of weakly acidic hypochlorous acid solution with microbicidal activity. Biocontrol. Sci. 22, 223-227.   DOI
11 Lee, Y. H., Kim, S., Choi, H. W., Lee, M. J., Ra, D. S., Kim, I. S., Park, J. W. and Lee, S. W. 2010. Fungicide resistance of Fusarium fujikuroi isolates isolated in Korea. Kor. J. Pestic. Sci. 14, 427-432.
12 Mew, T. W. and Gonzales, P. 2002. A handbook of rice seedborne fungi. Science Publishers, Enfield, NH, USA.
13 Oh, T. S., Park, Y. J., Kim, C. H., Cho, Y. K. and Jang, M. J. 2016. Effect of seed disinfection on Bakanae disease in Ginkgo biloba outer seed coat extract. Emir. J. Food Agric. 28, 671-675.   DOI
14 Ou, S. H. 1985. Rice diseases, 2nd ed. Commonwealth Mycological Institute. Kew, Surrey, England. p380.
15 Song, J. Y., Kim, N., Nam, M. H., Park, B., Whang, E., Choi, J. M. and Kim, H. K. 2013. Fungicidal effect of slightly acidic hypochlorous water against phytopathogenic fungi. Kor. J. Mycol. 41, 274-279.   DOI
16 Park, H. G., Shin, H. R., Lee, Y., Kim, S. W., Kwon, O. D., Park, I. J. and Kuk, Y. I. 2003. Influence of water temperature, soaking period, and chemical dosage on bakanae disease of rice (Gibberella fujikuroi) in seed disinfection. Kor. J. Pestic Sci. 7, 216-222.
17 Prutz, W. A. 1996. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 332, 110-120.   DOI