• Title/Summary/Keyword: 친수 패터닝

Search Result 10, Processing Time 0.029 seconds

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser (펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성)

  • Youngjin Cho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.

Patterning of Super-hydrophobic Surface Treated Polyimide Film (초발수 기판의 친수 패터닝을 이용한 금속배선화)

  • Rha, Jong-Joo;Um, Dae-Yong;Lee, Gun-Hwan;Choi, Doo-Sun;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1553-1555
    • /
    • 2008
  • Super-hydrophobic treated Polyimide film was used as a flexible substrate for developing a new method of metallization. Hydrophilic patterns were fabricated by IN irradiation through shadow mask. Patterned super-hydrophobic substrate was dipped into a bath containing silver nano ink Silver ink was only coated on hydrophilic patterned area. Metal lines of $600{\mu}m$ pitch were fabricated successfully. However, their thickness was too thin to serve as interconnection. To overcome this problem, iterative dipping was conducted. After repeating five times, the thickness of silver metal lines were increased to over than $2{\mu}$. After heat treatment of silver lines, their resistivities were reduced to order of $30{\mu}{\Omega}$-cm the similar level of values reported in other literatures. So, a new method of metallization has high potential for application of RFID antenna and flexible electronics substrates.

  • PDF

Unconventional Patterning for Organic Functional Materials Applicable to Renewable Energy Devices (유기물 기반의 새로운 패터닝 기법과 이를 이용한 신재생 에너지 소자)

  • Kim, Sung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.390-393
    • /
    • 2009
  • We report on a new patterning technique for organic functional materials applicable to organic photovoltacis (OPVs). The unconventioal patterning technique, $O_2$ plsama-etching selectively perfluoro-alkyl fluorosilanes, is used for producing a bulk-heterojunction active layer with poly(3-hexylthiophene) as the electron donor and [6,6]-phenyl-$C_{61}$ butyric acid methyl ester as the electron acceptor. The patterning with reduced leakage path and parasitic capacitance suggests a way for fabrication of OPVs with higher energy conversion efficiency.

Fabrication of patterned substrate by wet process for biochip (습식 공정법에 의한 바이오칩 용 패터닝 기판 제조)

  • Kim, Jin-Ho;Lee, Min;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.288-292
    • /
    • 2009
  • Hydrophobic/hydrophilic patterned substrates were fabricated on a glass substrate by a liquid phase deposition (LPD) method. Hydrophobic surface was obtained by modifying ZnO thin films with a rough surface using a fluoroalkyltrimethoxysilane (FAS) and hydrophilic surface was prepared by decomposing FAS on an exposed to UV light. The hexagonal ZnO rods were perpendicularly grown by LPD method on glass substrates with a ZnO seed layer. The diameter and thickness of hexagonal ZnO rods were increased as a function of increases of immersion time. The surface morphology, thickness, crystal structure, transmittance and contact angle of prepared ZnO thin films were measured by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectrophotometer (UV-vis) and contact angle measurement. Hydrophilic ZnO thin films with a contact angle of $20^{\circ}{\sim}30^{\circ}$ were changed to a hydrophobic surface with a contact angle of $145^{\circ}{\sim}161^{\circ}$ by a FAS surface treatment. Prepared hydrophobic surface was pattered by an irradiation of UV light using shadow mask with $300\;{\mu}m$ or 3 mm dot size. Finally, the hydrophobic surface exposed to UV light was changed to a hydrophilic surface.

플라즈마를 이용하여 소수성 처리 된 표면의 EHD 제트를 통한 패터닝 특성 비교 연구

  • O, Jong-Sik;Choe, Jae-Yong;Lee, Seok-Han;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.102-103
    • /
    • 2008
  • EHD(Electrohydrodynamics, 전기수력학)를 기반으로 한 정전기장 유도 잉크젯(또는 EHD jet) 헤드는 적층, 식각 작업 등의 일련의 과정을 생략하게 해줌으로써 마이크로 단위의 패 터닝 작업을 용이하게 해주고, 대기압 플라즈마 발생장치를 이용한 표면의 개질은 친수성 특성을 갖는 표면을 소수성 특성을 갖도록 변형시켜 주어 접촉각을 높임으로써 패턴의 크기를 줄여주는 효과가 있다. 본 연구에서, 대기압 플라즈마 발생 장치를 이용하여 유리의 표면을 소수성 특성을 갖도록 개질하여 정전기장 유도 잉크젯 헤드 장치를 이용한 패터닝 작업시, 패턴의 크기를 대폭 감소시키는 효과를 얻을 수 있었다.

  • PDF

Polydopamine Microfluidic System toward a Two-Dimensional, Gravity-Driven Mixing Device (폴리도파민 마이크로플루이딕시스템: 이차원, 중력이용 mixing 장치)

  • Yu, In-Seong;Lee, Hae-Sin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.81-83
    • /
    • 2012
  • 친수성 코팅 물질인 폴리도파민을 초소수성표면에 패터닝함으로써 이차원 마이크로 플루이딕 장치 (폴리도파민 마이크로플루이딕 장치)를 만듦. 폴리도파민 마이크로플루이딕 장치는 마이크로 펌프가 없이 오직 중력만을 이용해서 액적의 이동을 가능케하는 기술임. 또한 이 장치는 매우 빠르게 액적을 손실없이 혼합시키는 기술임. 본 기술을 이용하여 금입자 반응 및 단백질 구조 분석을 수행함.

  • PDF

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

포토레지스트를 이용한 선택적 세포배양기술 연구

  • Kim, Min-Su;Jo, Won-Ju;Choe, Jeong-Yeon;Im, Jeong-Ok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.247-247
    • /
    • 2010
  • 전계효과 트랜지스터를 이용한 바이오센서는 하나의 칩 위에 많은 센서 소자를 집적할 수 있으므로, 같은 종류의 센서를 다수 배열함으로써 다차원화할 수 있고, 다른 종류의 센서를 여러개 배열함으로써 다기능화할 수 있다. 또한 지능회로와 함께 집적하여 지능화하거나, 관련회로 및 장치들을 함께 집적함으로써 시스템화할 수 있기 때문에 최첨단 센서로 각광을 받고 있다. 그러나, 전계효과 트랜지스터를 이용한 바이오센서는 게이트 영역에 생체 분자를 고정시키는 것이 어렵고, 고정되더라도 생체 분자의 양이 미량이어서 재현성이 떨어지며, 생체 분자가 발생시키는 시그널이 적어 전류 세기 변화에 대한 검출감도가 저하되는 문제점이 있다. 본 연구에서는 반도체 리소그래피 공정을 이용하여 생체 분자를 물리 화학적 처리 없이 게이트 영역에 집중적으로 고정시킬 수 있는 기술에 대해 연구하였다. 산화막이 증착된 기판 위에 포토레지스트를 도포한 뒤 리소그래피공정을 이용하여 패터닝 하였으며 기판 위에 human embryonic kidney(HEK)-293 세포를 배양하였다. 연구결과, 친수성인 포토레지스트보다 소수성인 산화막 영역에 다수의 세포가 선택적으로 집중 배양됨을 확인하였다. 따라서 본 연구결과를 바이오센서에 적용할 경우 센서의 검출감도를 향상시킬 수 있을 것으로 기대된다.

  • PDF

Selective Array of Polystyrene Beads by Using Nanometer-Scaled Hydrophilic Thin Film Patterning (나노미터 규격의 친수성 박막 패터닝을 이용한 선택적 폴리스티렌 입자 배열)

  • Kang, Jung-Hwa;Kim, Kyoung-Soeb;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.103-104
    • /
    • 2007
  • Nanometer-scaled polymer beads, such as polystyrene beads, were used as nanometer fabrication materials due to their some advantages such as self-assembled monolayer, nanometer scaled size and excellent compatibility with silicon based devices. Thus, the investigation on these properties of polymer beads was required. It is difficult to control the array of polystyrene beads on silicon substrate. In this study, we investigated the condition of selective array of polystyrene beads on nanometer-scaled hydrophilic surface which was obtained by APS coating. A tilting method was used to array the polystyrene beads selectively on the substrate. The polystyrene beads could be arrayed selectively by this method. From these results, we verified that there are possibilities to fabricate unique tools for the nanometer-scaled electrical devices.

  • PDF

Nano-patterning technology using an UV-NIL method (UV-NIL(Ultraviolet-Nano-Imprinting-Lithography) 방법을 이용한 나노 패터닝기술)

  • 심영석;정준호;손현기;신영재;이응숙;최성욱;김재호
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. A 5${\times}$5${\times}$0.09 in. quartz stamp is fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. FAS(Fluoroalkanesilane) is used as a material for anti-adhesion surface treatment on the stamp and a thin organic film to improve adhesion on a wafer is formed by spin-coating. The low viscosity resin droplets with a nanometer scale volume are dispensed on the whole area of the coated wafer. The UV-NIL experiments have been performed using the EVG620-NIL. 370 nm - 1 m features on the stamp have been transferred to the thin resin layer on the wafer using the multi-dispensing method and UV-NIL process. We have measured the imprinted patterns and residual layer using SEM and AFM to evaluate the potential of the process.