• Title/Summary/Keyword: 친수표면

Search Result 483, Processing Time 0.023 seconds

Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces (친수성/소수성 수평 표면상에서의 액적이송 메커니즘)

  • Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.513-523
    • /
    • 2014
  • A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

Effect of nanosilica and TEOS in hydrophilic coating solution on the surface characteristics of solar cell glass panel (나노실리카와 TEOS가 함유된 친수성 코팅액의 태양광 유리팬널에 미치는 표면 특성 연구)

  • Lee, Soo;Kim, Seung Hye;Hwang, Heon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.152-162
    • /
    • 2017
  • A hydrophilic coating solution was prepared by adding a silane coupling agent and a nano-inorganic oxide in aqueous surfactant solution to increase the efficiency of photovoltaic power generation due to the introduction of antifogging and antifouling properties on the glass surface of the solar cell module. Addition of $Ludox^{(R)}$, a nano-inorganic oxide, to 1% hydrophilic coating solution showed improved hydrophilicity and excellent antifogging effect regardless of $Ludox^{(R)}$ concentration. However, the antifouling effect on the glass surface was showed only when Ludox was added more than 10%. In the case of addition of 0.7% of hydrolyzed TEOS at pH 4, the antifogging effect was maintained as a result of the steam test as well as the antifouling effect even after the coated glass surface was rubbed 100 times with a wet Kimwipe. In addition, from the surface roughness ($R_q$) calculated using AFM data, the higher surface roughness with irregular surface shape was obtained with the higher concentration of TEOS. The addition of 0.7% of TEOS showed relatively high surface roughness and well organized surface condition which can help to improve transmittance of light. In conclusion, $Ludox^{(R)}$ is not required only for the antifogging property. However, at least 10% of Ludox should be added to show antifouling effect and 0.7% of TEOS should be added for good durability.

Microbe Adhesion and Organic Removal from Synthetic Wastewater Treatment using Polypropylene Media Modified by Ion-Assisted Reactions (이온 보조 반응에 의하여 활성화된 폴리프로필렌 담체를 이용만 합성폐수 처리시 미생물 부착 및 유기물의 제거)

  • Seon, Yong-Ho;Han, Sung;Koh, Seok-Keun
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • The surface of polypropylene was modified by 1 keV $Ar^+$ ion beam in an $O_2$ environment in order to enhance wettability. Contact angle of deionized water on modified polypropylene was reduced from $78^{\circ}$to $22^{\circ}$. The enhanced wettability is originated from newly formed functional groups such as ether, carbonyl, and carbonyl groups. During immersion in deionized water, the enhanced wettability has remained nearly same. After washing in water, the hydrophilic functional groups on the polymer surface have been very stable. The modified polypropylene was adopted as bio-film media to remove organics in synthetic wastewater. Microbe adhesion on the polypropylene surface was improved due to the newly formed hydrophilic groups.

Effects of P2O5-doped on the Surface of MgO Particles for Hydrolysis, Water Repellency, and Insulation Behavior (MgO입자 표면에 도핑된 P2O5가 가수분해, 발수성, 그리고 절연거동에 미치는 영향)

  • Choi, Jin Sam
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.588-593
    • /
    • 2022
  • The effects of P2O5-doped on the surface of MgO particles on hydrolysis, water repellency, and insulation behavior were investigated. P2O5-doped MgO has exhibited a unique electrical property, which is significant insulation behavior due to both the suppression of the hydrolysis reaction by P2O5 and water repellency. Therefore, the insulation behavior was inversely proportional to the hydrophilicity and the Mg(OH)2 and OH-charge transfer ratio by the surface hydration reaction of MgO. The insulation of MgO according to aging was strongly influenced by the surface hydration reaction, the band gap of the added dopant species, and the hydrophilicity and hydrophobicity of the dopant. Finally, it was to show electrical insulation by inhibiting the surface hydration reaction of the hydrophilic MgO, which has a great potential for use in heat transfer medium applications.

Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate) (불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향)

  • Kim, Do Young;In, Se Jin;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In this study, poly(ethylene terephthalate) (PET) was treated with fluorination and ultrasonic washing treatment for hydrophilic modification of PET film. We measured the change of surface modified PET film surface characteristics using contact angle, surface free energy, FE-SEM, AFM and XPS. After direct fluorination and ultrasonic washing treatment, the water contact angle was measured to be $10.81^{\circ}$, 85% reduction compared to the untreated PET film. Total surface free energy has been measured to be $42.25mNm^{-1}$, 650% increase compared to the untreated PET film. Also RMS roughness has been measured to be 1.965 nm, 348% increase compared to the untreated PET film. Hydrophilic functional group C-OH bond concentration has increased approximately 3 times. These results are attributed to the hydrophilic functional group and cavitation due to chemical etching. From this result, it was suggested that the fluorination-ultrasonic washing treatment method could be useful to make PET film surface hydrophilic.

A Study for Reductive Degradation and Surface Characteristics of Hexachloroethane by Iron Sulfide ($FeS,\;FeS_{2}$) (황화철($FeS,\;FeS_{2}$)을 이용한 헥사클로로에탄의 환원적 분해반응과 표면특성에 관한 연구)

  • Park Sang-Won;Kim Sung-Kuk;Heo Jae-Eun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.35-42
    • /
    • 2006
  • The following results were obtained in the reductive degradation of hexachloroethane (HCA), and surface characteristics by using iron sulfide ($FeS,\;FeS_{2}$) mediators. HCA was degraded to pentachloroethane (PCA), tetrachloroethylene(PCE), trichloroethylene(TCE) and cis-l,2-dichloroethylene (cis-1,2-DCE) by complicated pathways such as hydrogenolysis, dehaloelimination and dehydrohalogenation. FeS had more rapid degradation rates of organic solvent than $FeS_{2}$. In liquidsolid reaction, the reaction rates of organic solvents were investigated to explain surface characteristics of FeS and $FeS_{2}$.. To determine surface characteristics of FeS and $FeS_{2}$, the specific surface area and surface potential of each mineral was determined and the hydrophilic site ($N_{s}$) was calculated. The specific surface area ($107.0470m^{2}/g\;and\;92.6374m^{2}/g$) and the $pH_{ZPC}$ of minerals ($FeS\;PH_{ZPC}=7.42,\;FeS_{2},\;PH_{ZPC}=7.80$) were measured. The results showed that the Ns of FeS and $FeS_{2}$ were $0.053\;site/mm^{2}\;and\;0.205\;site/mm^{2}$, respectively. $FeS_{2}$ had more hydrophilic surface than FeS. In other words, FeS have more hydrophobic surface site than $FeS_{2}$.

Effect of Membrane Materials on Membrane Fouling and Membrane Washing (막의 재질에 따른 막오염 특성 및 물리·화학적 세척의 영향)

  • Shim, Hyun-Sool;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.500-505
    • /
    • 2007
  • The objectives of this research were to (1) identify the membrane fouling potential due to different fractions of NOM (2) correlate the physicochemical properties of NOM and membranes with the adsorption of humic substances on membrane (4) find out the effect of membrane physical and chemical washing according to membrane material. The static adsorption test and adsorption test showed that hydrophobic organics adsorbed much more quickly than hydrophilic organics. In case of the effect of membrane properties on the adsorption of organic fractions, the adsorption rate ratio(a) of hydrophobic membrane (0.016, 0.077) was greater than that of hydrophilic membrane (0.010, 0.033) regardless of the kind of organic fractions. This suggests that the UF membrane fouling were occurred mainly by internal pore size decreasing due to adsorption of organic into pore surface for hydrophobic membrane, and by sieving of organics and forming a gel layer on the membrane surface for hydrophilic membrane. In conclusion, the decrease in the pore volume, which was caused by the organic adsorption into the internal pore, was greater with the hydrophobic membrane than with the hydrophilic membrane. In case of the effect of membrane properties on permeate flux, the rate of flux decline for the hydrophobic membrane was significantly greater than that for the hydrophilic membrane.

Study on the surface modification of zirconia with hydrophilic silanes (친수성기를 가진 실란을 이용한 지르코니아의 표면의 개질 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.247-254
    • /
    • 2016
  • Since microzirconia has excellent thermal and mechanical properties with high chemical and electrical resistance, it can be used in various fields. When the surface of zirconia becomes hydrophilic, its dispersibility in water will be improved as well as the resistance to most hydrophobic contaminants will be increased. In this study, we investigated the introduction of a hydrophilic groups on the microzircornia surface through hydrolysis and condensation reactions with two different silanes containing hydrophilic functional groups, such as ${\gamma}$-aminopropyltrimethoxysilane (APS) and ${\gamma}$-ureidopropyltrimethoxysilane (UPS) at different pH and concentration conditions. A covalent bond formation between the surface hydroxyl groups of zirconia and that of hydrolyzed silanes was confirmed by ninhydrin test and FT-IR spectroscopy. However, the presence of Si on the surfaces of both silane modified microzirconias was unable to detect by SEM/EDS technique. In addition, particle size analysis results provide that the size of microzirconia was changed to smaller or bigger than that of original zirconia due to crushing and aggregation during the modification process. The water dispersibility was improved for only APS modifed zirconia (AS-2 and AS-3) under neutral pH condition, but the water dispersibility and stability for all cases of 0.5~2% UPS modifed zirconia (US series) were much improved.

The surface modification research of Polypropylene by plasma discharge (플라즈마 처리에 의한 Polypropylene 섬유의 표면개질 연구)

  • Lee, Chang-Seok;Kwon, Young-Mi;Ryu, Sun-A;Jo, Jang-Hoon;Jo, Hang-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.34-34
    • /
    • 2012
  • Polypropylene 섬유는 세계적으로 큰 관심을 모으고 있는 섬유 소재로 환경친화성, 경량성, 신축성 등 다양한 기능성을 보유하여 미국, 일본 등의 선진국에서 의류 및 인테리어용으로 채택하여 널리 사용되고 있다. 그러나, polypropylene 섬유는 다른 섬유에 비해 융점이 매우 낮아 내열성이 약하여 가공 공정시 고온을 피해야 하고, 곁가지가 거의 없고 섬유 분자 구조가 매우 조밀하며 탄소와 수소로만 이루어진 분자구조에 의한 극소수성 성질 때문에 다른 종류의 물질들과 접착력이 없어 사용에 제약을 주어 다양한 용도로의 활용이 제한되고 있는 실정이다. 본 연구에서는 Polypropylene 섬유의 제품화에 필요한 요소 기술의 기초를 마련하고자 대기압 플라즈마를 적용하여 소수성 표면을 지니는 표면을 친수화 함으로써 polypropylene 섬유에 후가공이 가능하도록 한다. 따라서 Plasma 표면 처리에 의해 polypropylene 섬유에 미치는 영향에 대하여 조사하고, 표면을 친수화 함으로써 습윤성, 접착성 등 다양한 가공 기술을 적용하여 PP 섬유의 기능성을 향상시키고자 한다. 플라즈마 처리에 의한 폴리프로필렌 섬유의 모폴로지 변화는 주사전자현미경 (FE-SEM)으로 확인하였으며 표면개질 효과는 Wicking Test로 평가하였다.

  • PDF

Technology Trend of surface Wettability Control Using Layer-by-Layer Assembly Technique (다층박막법을 이용한 표면 젖음성 제어 기술 동향)

  • Sung, Chunghyun
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.171-178
    • /
    • 2017
  • Recently, layer-by-layer (LbL) assembly has emerged as a promising fabrication technique in controlling surface wetting properties. LbL assembly technique is eco-friendly versatile technique to control the hierarchical structure and surface properties in nano- and micro-scale by employing a variety of materials (e.g., polymers, surfactants, nanoparticles, etc.). This article reviews recent progress in controlling the surface wetting using LbL technique. In particular, technical trends and research findings on fabrication and the applications of superhydrophobic, superhydrophilc, and superoleophobic/superhydrophilic LbL surfaces are extensively explained. Additionally, basic principles and fabrication methods in emerging areas such as omniphobic, self-healing, intelligent and responsive LbL surfaces are discussed.